summaryrefslogtreecommitdiffstats
path: root/src/core/core_timing.cpp
blob: 0e7b5f94369c4252794d6953cf0d88aca9812331 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>

#include "common/microprofile.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"

namespace Core::Timing {

constexpr s64 MAX_SLICE_LENGTH = 4000;

std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
    return std::make_shared<EventType>(std::move(callback), std::move(name));
}

struct CoreTiming::Event {
    s64 time;
    u64 fifo_order;
    std::uintptr_t user_data;
    std::weak_ptr<EventType> type;
    s64 reschedule_time;

    // Sort by time, unless the times are the same, in which case sort by
    // the order added to the queue
    friend bool operator>(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
    }

    friend bool operator<(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
    }
};

CoreTiming::CoreTiming()
    : clock{Common::CreateBestMatchingClock(Hardware::BASE_CLOCK_RATE, Hardware::CNTFREQ)} {}

CoreTiming::~CoreTiming() {
    Reset();
}

void CoreTiming::ThreadEntry(CoreTiming& instance) {
    constexpr char name[] = "HostTiming";
    MicroProfileOnThreadCreate(name);
    Common::SetCurrentThreadName(name);
    Common::SetCurrentThreadPriority(Common::ThreadPriority::Critical);
    instance.on_thread_init();
    instance.ThreadLoop();
    MicroProfileOnThreadExit();
}

void CoreTiming::Initialize(std::function<void()>&& on_thread_init_) {
    Reset();
    on_thread_init = std::move(on_thread_init_);
    event_fifo_id = 0;
    shutting_down = false;
    ticks = 0;
    const auto empty_timed_callback = [](std::uintptr_t, u64, std::chrono::nanoseconds)
        -> std::optional<std::chrono::nanoseconds> { return std::nullopt; };
    ev_lost = CreateEvent("_lost_event", empty_timed_callback);
    if (is_multicore) {
        timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
    }
}

void CoreTiming::ClearPendingEvents() {
    event_queue.clear();
}

void CoreTiming::Pause(bool is_paused) {
    paused = is_paused;
    pause_event.Set();

    if (!is_paused) {
        pause_end_time = GetGlobalTimeNs().count();
    }
}

void CoreTiming::SyncPause(bool is_paused) {
    if (is_paused == paused && paused_set == paused) {
        return;
    }

    Pause(is_paused);
    if (timer_thread) {
        if (!is_paused) {
            pause_event.Set();
        }
        event.Set();
        while (paused_set != is_paused)
            ;
    }

    if (!is_paused) {
        pause_end_time = GetGlobalTimeNs().count();
    }
}

bool CoreTiming::IsRunning() const {
    return !paused_set;
}

bool CoreTiming::HasPendingEvents() const {
    return !(wait_set && event_queue.empty());
}

void CoreTiming::ScheduleEvent(std::chrono::nanoseconds ns_into_future,
                               const std::shared_ptr<EventType>& event_type,
                               std::uintptr_t user_data, bool absolute_time) {
    {
        std::scoped_lock scope{basic_lock};
        const auto next_time{absolute_time ? ns_into_future : GetGlobalTimeNs() + ns_into_future};

        event_queue.emplace_back(
            Event{next_time.count(), event_fifo_id++, user_data, event_type, 0});
        std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }

    event.Set();
}

void CoreTiming::ScheduleLoopingEvent(std::chrono::nanoseconds start_time,
                                      std::chrono::nanoseconds resched_time,
                                      const std::shared_ptr<EventType>& event_type,
                                      std::uintptr_t user_data, bool absolute_time) {
    {
        std::scoped_lock scope{basic_lock};
        const auto next_time{absolute_time ? start_time : GetGlobalTimeNs() + start_time};

        event_queue.emplace_back(
            Event{next_time.count(), event_fifo_id++, user_data, event_type, resched_time.count()});

        std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }

    event.Set();
}

void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type,
                                 std::uintptr_t user_data) {
    std::scoped_lock scope{basic_lock};
    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
        return e.type.lock().get() == event_type.get() && e.user_data == user_data;
    });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

void CoreTiming::AddTicks(u64 ticks_to_add) {
    ticks += ticks_to_add;
    downcount -= static_cast<s64>(ticks);
}

void CoreTiming::Idle() {
    if (!event_queue.empty()) {
        const u64 next_event_time = event_queue.front().time;
        const u64 next_ticks = nsToCycles(std::chrono::nanoseconds(next_event_time)) + 10U;
        if (next_ticks > ticks) {
            ticks = next_ticks;
        }
        return;
    }
    ticks += 1000U;
}

void CoreTiming::ResetTicks() {
    downcount = MAX_SLICE_LENGTH;
}

u64 CoreTiming::GetCPUTicks() const {
    if (is_multicore) {
        return clock->GetCPUCycles();
    }
    return ticks;
}

u64 CoreTiming::GetClockTicks() const {
    if (is_multicore) {
        return clock->GetClockCycles();
    }
    return CpuCyclesToClockCycles(ticks);
}

void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
    std::scoped_lock lock{basic_lock};

    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
        return e.type.lock().get() == event_type.get();
    });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

std::optional<s64> CoreTiming::Advance() {
    std::scoped_lock lock{advance_lock, basic_lock};
    global_timer = GetGlobalTimeNs().count();

    while (!event_queue.empty() && event_queue.front().time <= global_timer) {
        Event evt = std::move(event_queue.front());
        std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
        event_queue.pop_back();

        if (const auto event_type{evt.type.lock()}) {
            basic_lock.unlock();

            const auto new_schedule_time{event_type->callback(
                evt.user_data, evt.time,
                std::chrono::nanoseconds{GetGlobalTimeNs().count() - evt.time})};

            basic_lock.lock();

            if (evt.reschedule_time != 0) {
                const auto next_schedule_time{new_schedule_time.has_value()
                                                  ? new_schedule_time.value().count()
                                                  : evt.reschedule_time};

                // If this event was scheduled into a pause, its time now is going to be way behind.
                // Re-set this event to continue from the end of the pause.
                auto next_time{evt.time + next_schedule_time};
                if (evt.time < pause_end_time) {
                    next_time = pause_end_time + next_schedule_time;
                }

                event_queue.emplace_back(
                    Event{next_time, event_fifo_id++, evt.user_data, evt.type, next_schedule_time});
                std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
            }
        }

        global_timer = GetGlobalTimeNs().count();
    }

    if (!event_queue.empty()) {
        return event_queue.front().time;
    } else {
        return std::nullopt;
    }
}

void CoreTiming::ThreadLoop() {
    has_started = true;
    while (!shutting_down) {
        while (!paused) {
            paused_set = false;
            const auto next_time = Advance();
            if (next_time) {
                // There are more events left in the queue, wait until the next event.
                const auto wait_time = *next_time - GetGlobalTimeNs().count();
                if (wait_time > 0) {
#ifdef _WIN32
                    // Assume a timer resolution of 1ms.
                    static constexpr s64 TimerResolutionNS = 1000000;

                    // Sleep in discrete intervals of the timer resolution, and spin the rest.
                    const auto sleep_time = wait_time - (wait_time % TimerResolutionNS);
                    if (sleep_time > 0) {
                        event.WaitFor(std::chrono::nanoseconds(sleep_time));
                    }

                    while (!paused && !event.IsSet() && GetGlobalTimeNs().count() < *next_time) {
                        // Yield to reduce thread starvation.
                        std::this_thread::yield();
                    }

                    if (event.IsSet()) {
                        event.Reset();
                    }
#else
                    event.WaitFor(std::chrono::nanoseconds(wait_time));
#endif
                }
            } else {
                // Queue is empty, wait until another event is scheduled and signals us to continue.
                wait_set = true;
                event.Wait();
            }
            wait_set = false;
        }

        paused_set = true;
        clock->Pause(true);
        pause_event.Wait();
        clock->Pause(false);
    }
}

void CoreTiming::Reset() {
    paused = true;
    shutting_down = true;
    pause_event.Set();
    event.Set();
    if (timer_thread) {
        timer_thread->join();
    }
    timer_thread.reset();
    has_started = false;
}

std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
    if (is_multicore) {
        return clock->GetTimeNS();
    }
    return CyclesToNs(ticks);
}

std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
    if (is_multicore) {
        return clock->GetTimeUS();
    }
    return CyclesToUs(ticks);
}

} // namespace Core::Timing