summaryrefslogtreecommitdiffstats
path: root/src/core/cpu_manager.cpp
blob: 0dd4c2196d5843b595f2e6a771bb33f359e1c5f0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/fiber.h"
#include "common/microprofile.h"
#include "common/scope_exit.h"
#include "common/thread.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/cpu_manager.h"
#include "core/hle/kernel/k_interrupt_manager.h"
#include "core/hle/kernel/k_scheduler.h"
#include "core/hle/kernel/k_thread.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "video_core/gpu.h"

namespace Core {

CpuManager::CpuManager(System& system_) : system{system_} {}
CpuManager::~CpuManager() = default;

void CpuManager::ThreadStart(std::stop_token stop_token, CpuManager& cpu_manager,
                             std::size_t core) {
    cpu_manager.RunThread(core);
}

void CpuManager::Initialize() {
    num_cores = is_multicore ? Core::Hardware::NUM_CPU_CORES : 1;
    gpu_barrier = std::make_unique<Common::Barrier>(num_cores + 1);

    for (std::size_t core = 0; core < num_cores; core++) {
        core_data[core].host_thread = std::jthread(ThreadStart, std::ref(*this), core);
    }
}

void CpuManager::Shutdown() {
    for (std::size_t core = 0; core < num_cores; core++) {
        if (core_data[core].host_thread.joinable()) {
            core_data[core].host_thread.join();
        }
    }
}

void CpuManager::GuestThreadFunction() {
    if (is_multicore) {
        MultiCoreRunGuestThread();
    } else {
        SingleCoreRunGuestThread();
    }
}

void CpuManager::IdleThreadFunction() {
    if (is_multicore) {
        MultiCoreRunIdleThread();
    } else {
        SingleCoreRunIdleThread();
    }
}

void CpuManager::ShutdownThreadFunction() {
    ShutdownThread();
}

void CpuManager::HandleInterrupt() {
    auto& kernel = system.Kernel();
    auto core_index = kernel.CurrentPhysicalCoreIndex();

    Kernel::KInterruptManager::HandleInterrupt(kernel, static_cast<s32>(core_index));
}

///////////////////////////////////////////////////////////////////////////////
///                             MultiCore                                   ///
///////////////////////////////////////////////////////////////////////////////

void CpuManager::MultiCoreRunGuestThread() {
    // Similar to UserModeThreadStarter in HOS
    auto& kernel = system.Kernel();
    kernel.CurrentScheduler()->OnThreadStart();

    while (true) {
        auto* physical_core = &kernel.CurrentPhysicalCore();
        while (!physical_core->IsInterrupted()) {
            physical_core->Run();
            physical_core = &kernel.CurrentPhysicalCore();
        }

        HandleInterrupt();
    }
}

void CpuManager::MultiCoreRunIdleThread() {
    // Not accurate to HOS. Remove this entire method when singlecore is removed.
    // See notes in KScheduler::ScheduleImpl for more information about why this
    // is inaccurate.

    auto& kernel = system.Kernel();
    kernel.CurrentScheduler()->OnThreadStart();

    while (true) {
        auto& physical_core = kernel.CurrentPhysicalCore();
        if (!physical_core.IsInterrupted()) {
            physical_core.Idle();
        }

        HandleInterrupt();
    }
}

///////////////////////////////////////////////////////////////////////////////
///                             SingleCore                                   ///
///////////////////////////////////////////////////////////////////////////////

void CpuManager::SingleCoreRunGuestThread() {
    auto& kernel = system.Kernel();
    kernel.CurrentScheduler()->OnThreadStart();

    while (true) {
        auto* physical_core = &kernel.CurrentPhysicalCore();
        if (!physical_core->IsInterrupted()) {
            physical_core->Run();
            physical_core = &kernel.CurrentPhysicalCore();
        }

        kernel.SetIsPhantomModeForSingleCore(true);
        system.CoreTiming().Advance();
        kernel.SetIsPhantomModeForSingleCore(false);

        PreemptSingleCore();
        HandleInterrupt();
    }
}

void CpuManager::SingleCoreRunIdleThread() {
    auto& kernel = system.Kernel();
    kernel.CurrentScheduler()->OnThreadStart();

    while (true) {
        PreemptSingleCore(false);
        system.CoreTiming().AddTicks(1000U);
        idle_count++;
        HandleInterrupt();
    }
}

void CpuManager::PreemptSingleCore(bool from_running_environment) {
    auto& kernel = system.Kernel();

    if (idle_count >= 4 || from_running_environment) {
        if (!from_running_environment) {
            system.CoreTiming().Idle();
            idle_count = 0;
        }
        kernel.SetIsPhantomModeForSingleCore(true);
        system.CoreTiming().Advance();
        kernel.SetIsPhantomModeForSingleCore(false);
    }
    current_core.store((current_core + 1) % Core::Hardware::NUM_CPU_CORES);
    system.CoreTiming().ResetTicks();
    kernel.Scheduler(current_core).PreemptSingleCore();

    // We've now been scheduled again, and we may have exchanged schedulers.
    // Reload the scheduler in case it's different.
    if (!kernel.Scheduler(current_core).IsIdle()) {
        idle_count = 0;
    }
}

void CpuManager::GuestActivate() {
    // Similar to the HorizonKernelMain callback in HOS
    auto& kernel = system.Kernel();
    auto* scheduler = kernel.CurrentScheduler();

    scheduler->Activate();
    UNREACHABLE();
}

void CpuManager::ShutdownThread() {
    auto& kernel = system.Kernel();
    auto* thread = kernel.GetCurrentEmuThread();
    auto core = is_multicore ? kernel.CurrentPhysicalCoreIndex() : 0;

    Common::Fiber::YieldTo(thread->GetHostContext(), *core_data[core].host_context);
    UNREACHABLE();
}

void CpuManager::RunThread(std::size_t core) {
    /// Initialization
    system.RegisterCoreThread(core);
    std::string name;
    if (is_multicore) {
        name = "CPUCore_" + std::to_string(core);
    } else {
        name = "CPUThread";
    }
    MicroProfileOnThreadCreate(name.c_str());
    Common::SetCurrentThreadName(name.c_str());
    Common::SetCurrentThreadPriority(Common::ThreadPriority::High);
    auto& data = core_data[core];
    data.host_context = Common::Fiber::ThreadToFiber();

    // Cleanup
    SCOPE_EXIT({
        data.host_context->Exit();
        MicroProfileOnThreadExit();
    });

    // Running
    gpu_barrier->Sync();

    if (!is_async_gpu && !is_multicore) {
        system.GPU().ObtainContext();
    }

    auto& kernel = system.Kernel();
    auto& scheduler = *kernel.CurrentScheduler();
    auto* thread = scheduler.GetSchedulerCurrentThread();
    Kernel::SetCurrentThread(kernel, thread);

    Common::Fiber::YieldTo(data.host_context, *thread->GetHostContext());
}

} // namespace Core