summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_memory_manager.cpp
blob: d6bd27296254ed7dbb4ca60969cb175a293352f9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <algorithm>

#include "common/alignment.h"
#include "common/assert.h"
#include "common/scope_exit.h"
#include "core/core.h"
#include "core/device_memory.h"
#include "core/hle/kernel/initial_process.h"
#include "core/hle/kernel/k_memory_manager.h"
#include "core/hle/kernel/k_page_group.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/svc_results.h"

namespace Kernel {

namespace {

constexpr KMemoryManager::Pool GetPoolFromMemoryRegionType(u32 type) {
    if ((type | KMemoryRegionType_DramApplicationPool) == type) {
        return KMemoryManager::Pool::Application;
    } else if ((type | KMemoryRegionType_DramAppletPool) == type) {
        return KMemoryManager::Pool::Applet;
    } else if ((type | KMemoryRegionType_DramSystemPool) == type) {
        return KMemoryManager::Pool::System;
    } else if ((type | KMemoryRegionType_DramSystemNonSecurePool) == type) {
        return KMemoryManager::Pool::SystemNonSecure;
    } else {
        UNREACHABLE_MSG("InvalidMemoryRegionType for conversion to Pool");
    }
}

} // namespace

KMemoryManager::KMemoryManager(Core::System& system)
    : m_system{system}, m_memory_layout{system.Kernel().MemoryLayout()},
      m_pool_locks{
          KLightLock{system.Kernel()},
          KLightLock{system.Kernel()},
          KLightLock{system.Kernel()},
          KLightLock{system.Kernel()},
      } {}

void KMemoryManager::Initialize(KVirtualAddress management_region, size_t management_region_size) {

    // Clear the management region to zero.
    const KVirtualAddress management_region_end = management_region + management_region_size;
    // std::memset(GetVoidPointer(management_region), 0, management_region_size);

    // Reset our manager count.
    m_num_managers = 0;

    // Traverse the virtual memory layout tree, initializing each manager as appropriate.
    while (m_num_managers != MaxManagerCount) {
        // Locate the region that should initialize the current manager.
        KPhysicalAddress region_address = 0;
        size_t region_size = 0;
        Pool region_pool = Pool::Count;
        for (const auto& it : m_system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
            // We only care about regions that we need to create managers for.
            if (!it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
                continue;
            }

            // We want to initialize the managers in order.
            if (it.GetAttributes() != m_num_managers) {
                continue;
            }

            const KPhysicalAddress cur_start = it.GetAddress();
            const KPhysicalAddress cur_end = it.GetEndAddress();

            // Validate the region.
            ASSERT(cur_end != 0);
            ASSERT(cur_start != 0);
            ASSERT(it.GetSize() > 0);

            // Update the region's extents.
            if (region_address == 0) {
                region_address = cur_start;
                region_size = it.GetSize();
                region_pool = GetPoolFromMemoryRegionType(it.GetType());
            } else {
                ASSERT(cur_start == region_address + region_size);

                // Update the size.
                region_size = cur_end - region_address;
                ASSERT(GetPoolFromMemoryRegionType(it.GetType()) == region_pool);
            }
        }

        // If we didn't find a region, we're done.
        if (region_size == 0) {
            break;
        }

        // Initialize a new manager for the region.
        Impl* manager = std::addressof(m_managers[m_num_managers++]);
        ASSERT(m_num_managers <= m_managers.size());

        const size_t cur_size = manager->Initialize(region_address, region_size, management_region,
                                                    management_region_end, region_pool);
        management_region += cur_size;
        ASSERT(management_region <= management_region_end);

        // Insert the manager into the pool list.
        const auto region_pool_index = static_cast<u32>(region_pool);
        if (m_pool_managers_tail[region_pool_index] == nullptr) {
            m_pool_managers_head[region_pool_index] = manager;
        } else {
            m_pool_managers_tail[region_pool_index]->SetNext(manager);
            manager->SetPrev(m_pool_managers_tail[region_pool_index]);
        }
        m_pool_managers_tail[region_pool_index] = manager;
    }

    // Free each region to its corresponding heap.
    size_t reserved_sizes[MaxManagerCount] = {};
    const KPhysicalAddress ini_start = GetInitialProcessBinaryPhysicalAddress();
    const size_t ini_size = GetInitialProcessBinarySize();
    const KPhysicalAddress ini_end = ini_start + ini_size;
    const KPhysicalAddress ini_last = ini_end - 1;
    for (const auto& it : m_system.Kernel().MemoryLayout().GetPhysicalMemoryRegionTree()) {
        if (it.IsDerivedFrom(KMemoryRegionType_DramUserPool)) {
            // Get the manager for the region.
            auto& manager = m_managers[it.GetAttributes()];

            const KPhysicalAddress cur_start = it.GetAddress();
            const KPhysicalAddress cur_last = it.GetLastAddress();
            const KPhysicalAddress cur_end = it.GetEndAddress();

            if (cur_start <= ini_start && ini_last <= cur_last) {
                // Free memory before the ini to the heap.
                if (cur_start != ini_start) {
                    manager.Free(cur_start, (ini_start - cur_start) / PageSize);
                }

                // Open/reserve the ini memory.
                manager.OpenFirst(ini_start, ini_size / PageSize);
                reserved_sizes[it.GetAttributes()] += ini_size;

                // Free memory after the ini to the heap.
                if (ini_last != cur_last) {
                    ASSERT(cur_end != 0);
                    manager.Free(ini_end, (cur_end - ini_end) / PageSize);
                }
            } else {
                // Ensure there's no partial overlap with the ini image.
                if (cur_start <= ini_last) {
                    ASSERT(cur_last < ini_start);
                } else {
                    // Otherwise, check the region for general validity.
                    ASSERT(cur_end != 0);
                }

                // Free the memory to the heap.
                manager.Free(cur_start, it.GetSize() / PageSize);
            }
        }
    }

    // Update the used size for all managers.
    for (size_t i = 0; i < m_num_managers; ++i) {
        m_managers[i].SetInitialUsedHeapSize(reserved_sizes[i]);
    }
}

Result KMemoryManager::InitializeOptimizedMemory(u64 process_id, Pool pool) {
    const u32 pool_index = static_cast<u32>(pool);

    // Lock the pool.
    KScopedLightLock lk(m_pool_locks[pool_index]);

    // Check that we don't already have an optimized process.
    R_UNLESS(!m_has_optimized_process[pool_index], ResultBusy);

    // Set the optimized process id.
    m_optimized_process_ids[pool_index] = process_id;
    m_has_optimized_process[pool_index] = true;

    // Clear the management area for the optimized process.
    for (auto* manager = this->GetFirstManager(pool, Direction::FromFront); manager != nullptr;
         manager = this->GetNextManager(manager, Direction::FromFront)) {
        manager->InitializeOptimizedMemory(m_system.Kernel());
    }

    R_SUCCEED();
}

void KMemoryManager::FinalizeOptimizedMemory(u64 process_id, Pool pool) {
    const u32 pool_index = static_cast<u32>(pool);

    // Lock the pool.
    KScopedLightLock lk(m_pool_locks[pool_index]);

    // If the process was optimized, clear it.
    if (m_has_optimized_process[pool_index] && m_optimized_process_ids[pool_index] == process_id) {
        m_has_optimized_process[pool_index] = false;
    }
}

KPhysicalAddress KMemoryManager::AllocateAndOpenContinuous(size_t num_pages, size_t align_pages,
                                                           u32 option) {
    // Early return if we're allocating no pages.
    if (num_pages == 0) {
        return 0;
    }

    // Lock the pool that we're allocating from.
    const auto [pool, dir] = DecodeOption(option);
    KScopedLightLock lk(m_pool_locks[static_cast<std::size_t>(pool)]);

    // Choose a heap based on our page size request.
    const s32 heap_index = KPageHeap::GetAlignedBlockIndex(num_pages, align_pages);

    // Loop, trying to iterate from each block.
    Impl* chosen_manager = nullptr;
    KPhysicalAddress allocated_block = 0;
    for (chosen_manager = this->GetFirstManager(pool, dir); chosen_manager != nullptr;
         chosen_manager = this->GetNextManager(chosen_manager, dir)) {
        allocated_block = chosen_manager->AllocateAligned(heap_index, num_pages, align_pages);
        if (allocated_block != 0) {
            break;
        }
    }

    // If we failed to allocate, quit now.
    if (allocated_block == 0) {
        return 0;
    }

    // Maintain the optimized memory bitmap, if we should.
    if (m_has_optimized_process[static_cast<size_t>(pool)]) {
        chosen_manager->TrackUnoptimizedAllocation(m_system.Kernel(), allocated_block, num_pages);
    }

    // Open the first reference to the pages.
    chosen_manager->OpenFirst(allocated_block, num_pages);

    return allocated_block;
}

Result KMemoryManager::AllocatePageGroupImpl(KPageGroup* out, size_t num_pages, Pool pool,
                                             Direction dir, bool unoptimized, bool random) {
    // Choose a heap based on our page size request.
    const s32 heap_index = KPageHeap::GetBlockIndex(num_pages);
    R_UNLESS(0 <= heap_index, ResultOutOfMemory);

    // Ensure that we don't leave anything un-freed.
    ON_RESULT_FAILURE {
        for (const auto& it : *out) {
            auto& manager = this->GetManager(it.GetAddress());
            const size_t node_num_pages = std::min<u64>(
                it.GetNumPages(), (manager.GetEndAddress() - it.GetAddress()) / PageSize);
            manager.Free(it.GetAddress(), node_num_pages);
        }
        out->Finalize();
    };

    // Keep allocating until we've allocated all our pages.
    for (s32 index = heap_index; index >= 0 && num_pages > 0; index--) {
        const size_t pages_per_alloc = KPageHeap::GetBlockNumPages(index);
        for (Impl* cur_manager = this->GetFirstManager(pool, dir); cur_manager != nullptr;
             cur_manager = this->GetNextManager(cur_manager, dir)) {
            while (num_pages >= pages_per_alloc) {
                // Allocate a block.
                KPhysicalAddress allocated_block = cur_manager->AllocateBlock(index, random);
                if (allocated_block == 0) {
                    break;
                }

                // Ensure we don't leak the block if we fail.
                ON_RESULT_FAILURE_2 {
                    cur_manager->Free(allocated_block, pages_per_alloc);
                };

                // Add the block to our group.
                R_TRY(out->AddBlock(allocated_block, pages_per_alloc));

                // Maintain the optimized memory bitmap, if we should.
                if (unoptimized) {
                    cur_manager->TrackUnoptimizedAllocation(m_system.Kernel(), allocated_block,
                                                            pages_per_alloc);
                }

                num_pages -= pages_per_alloc;
            }
        }
    }

    // Only succeed if we allocated as many pages as we wanted.
    R_UNLESS(num_pages == 0, ResultOutOfMemory);

    // We succeeded!
    R_SUCCEED();
}

Result KMemoryManager::AllocateAndOpen(KPageGroup* out, size_t num_pages, u32 option) {
    ASSERT(out != nullptr);
    ASSERT(out->GetNumPages() == 0);

    // Early return if we're allocating no pages.
    R_SUCCEED_IF(num_pages == 0);

    // Lock the pool that we're allocating from.
    const auto [pool, dir] = DecodeOption(option);
    KScopedLightLock lk(m_pool_locks[static_cast<size_t>(pool)]);

    // Allocate the page group.
    R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir,
                                      m_has_optimized_process[static_cast<size_t>(pool)], true));

    // Open the first reference to the pages.
    for (const auto& block : *out) {
        KPhysicalAddress cur_address = block.GetAddress();
        size_t remaining_pages = block.GetNumPages();
        while (remaining_pages > 0) {
            // Get the manager for the current address.
            auto& manager = this->GetManager(cur_address);

            // Process part or all of the block.
            const size_t cur_pages =
                std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
            manager.OpenFirst(cur_address, cur_pages);

            // Advance.
            cur_address += cur_pages * PageSize;
            remaining_pages -= cur_pages;
        }
    }

    R_SUCCEED();
}

Result KMemoryManager::AllocateForProcess(KPageGroup* out, size_t num_pages, u32 option,
                                          u64 process_id, u8 fill_pattern) {
    ASSERT(out != nullptr);
    ASSERT(out->GetNumPages() == 0);

    // Decode the option.
    const auto [pool, dir] = DecodeOption(option);

    // Allocate the memory.
    bool optimized;
    {
        // Lock the pool that we're allocating from.
        KScopedLightLock lk(m_pool_locks[static_cast<size_t>(pool)]);

        // Check if we have an optimized process.
        const bool has_optimized = m_has_optimized_process[static_cast<size_t>(pool)];
        const bool is_optimized = m_optimized_process_ids[static_cast<size_t>(pool)] == process_id;

        // Allocate the page group.
        R_TRY(this->AllocatePageGroupImpl(out, num_pages, pool, dir, has_optimized && !is_optimized,
                                          false));

        // Set whether we should optimize.
        optimized = has_optimized && is_optimized;
    }

    // Perform optimized memory tracking, if we should.
    if (optimized) {
        // Iterate over the allocated blocks.
        for (const auto& block : *out) {
            // Get the block extents.
            const KPhysicalAddress block_address = block.GetAddress();
            const size_t block_pages = block.GetNumPages();

            // If it has no pages, we don't need to do anything.
            if (block_pages == 0) {
                continue;
            }

            // Fill all the pages that we need to fill.
            bool any_new = false;
            {
                KPhysicalAddress cur_address = block_address;
                size_t remaining_pages = block_pages;
                while (remaining_pages > 0) {
                    // Get the manager for the current address.
                    auto& manager = this->GetManager(cur_address);

                    // Process part or all of the block.
                    const size_t cur_pages =
                        std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
                    any_new = manager.ProcessOptimizedAllocation(m_system.Kernel(), cur_address,
                                                                 cur_pages, fill_pattern);

                    // Advance.
                    cur_address += cur_pages * PageSize;
                    remaining_pages -= cur_pages;
                }
            }

            // If there are new pages, update tracking for the allocation.
            if (any_new) {
                // Update tracking for the allocation.
                KPhysicalAddress cur_address = block_address;
                size_t remaining_pages = block_pages;
                while (remaining_pages > 0) {
                    // Get the manager for the current address.
                    auto& manager = this->GetManager(cur_address);

                    // Lock the pool for the manager.
                    KScopedLightLock lk(m_pool_locks[static_cast<size_t>(manager.GetPool())]);

                    // Track some or all of the current pages.
                    const size_t cur_pages =
                        std::min(remaining_pages, manager.GetPageOffsetToEnd(cur_address));
                    manager.TrackOptimizedAllocation(m_system.Kernel(), cur_address, cur_pages);

                    // Advance.
                    cur_address += cur_pages * PageSize;
                    remaining_pages -= cur_pages;
                }
            }
        }
    } else {
        // Set all the allocated memory.
        for (const auto& block : *out) {
            m_system.DeviceMemory().buffer.ClearBackingRegion(GetInteger(block.GetAddress()) -
                                                                  Core::DramMemoryMap::Base,
                                                              block.GetSize(), fill_pattern);
        }
    }

    R_SUCCEED();
}

size_t KMemoryManager::Impl::Initialize(KPhysicalAddress address, size_t size,
                                        KVirtualAddress management, KVirtualAddress management_end,
                                        Pool p) {
    // Calculate management sizes.
    const size_t ref_count_size = (size / PageSize) * sizeof(u16);
    const size_t optimize_map_size = CalculateOptimizedProcessOverheadSize(size);
    const size_t manager_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
    const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(size);
    const size_t total_management_size = manager_size + page_heap_size;
    ASSERT(manager_size <= total_management_size);
    ASSERT(management + total_management_size <= management_end);
    ASSERT(Common::IsAligned(total_management_size, PageSize));

    // Setup region.
    m_pool = p;
    m_management_region = management;
    m_page_reference_counts.resize(
        Kernel::Board::Nintendo::Nx::KSystemControl::Init::GetIntendedMemorySize() / PageSize);
    ASSERT(Common::IsAligned(GetInteger(m_management_region), PageSize));

    // Initialize the manager's KPageHeap.
    m_heap.Initialize(address, size, management + manager_size, page_heap_size);

    return total_management_size;
}

void KMemoryManager::Impl::InitializeOptimizedMemory(KernelCore& kernel) {
    auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
    auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);

    std::memset(optimize_map, 0, CalculateOptimizedProcessOverheadSize(m_heap.GetSize()));
}

void KMemoryManager::Impl::TrackUnoptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
                                                      size_t num_pages) {
    auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
    auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);

    // Get the range we're tracking.
    size_t offset = this->GetPageOffset(block);
    const size_t last = offset + num_pages - 1;

    // Track.
    while (offset <= last) {
        // Mark the page as not being optimized-allocated.
        optimize_map[offset / Common::BitSize<u64>()] &=
            ~(u64(1) << (offset % Common::BitSize<u64>()));

        offset++;
    }
}

void KMemoryManager::Impl::TrackOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
                                                    size_t num_pages) {
    auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
    auto* optimize_map = kernel.System().DeviceMemory().GetPointer<u64>(optimize_pa);

    // Get the range we're tracking.
    size_t offset = this->GetPageOffset(block);
    const size_t last = offset + num_pages - 1;

    // Track.
    while (offset <= last) {
        // Mark the page as being optimized-allocated.
        optimize_map[offset / Common::BitSize<u64>()] |=
            (u64(1) << (offset % Common::BitSize<u64>()));

        offset++;
    }
}

bool KMemoryManager::Impl::ProcessOptimizedAllocation(KernelCore& kernel, KPhysicalAddress block,
                                                      size_t num_pages, u8 fill_pattern) {
    auto& device_memory = kernel.System().DeviceMemory();
    auto optimize_pa = KPageTable::GetHeapPhysicalAddress(kernel, m_management_region);
    auto* optimize_map = device_memory.GetPointer<u64>(optimize_pa);

    // We want to return whether any pages were newly allocated.
    bool any_new = false;

    // Get the range we're processing.
    size_t offset = this->GetPageOffset(block);
    const size_t last = offset + num_pages - 1;

    // Process.
    while (offset <= last) {
        // Check if the page has been optimized-allocated before.
        if ((optimize_map[offset / Common::BitSize<u64>()] &
             (u64(1) << (offset % Common::BitSize<u64>()))) == 0) {
            // If not, it's new.
            any_new = true;

            // Fill the page.
            auto* ptr = device_memory.GetPointer<u8>(m_heap.GetAddress());
            std::memset(ptr + offset * PageSize, fill_pattern, PageSize);
        }

        offset++;
    }

    // Return the number of pages we processed.
    return any_new;
}

size_t KMemoryManager::Impl::CalculateManagementOverheadSize(size_t region_size) {
    const size_t ref_count_size = (region_size / PageSize) * sizeof(u16);
    const size_t optimize_map_size =
        (Common::AlignUp((region_size / PageSize), Common::BitSize<u64>()) /
         Common::BitSize<u64>()) *
        sizeof(u64);
    const size_t manager_meta_size = Common::AlignUp(optimize_map_size + ref_count_size, PageSize);
    const size_t page_heap_size = KPageHeap::CalculateManagementOverheadSize(region_size);
    return manager_meta_size + page_heap_size;
}

} // namespace Kernel