summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/k_page_heap.cpp
blob: 7b02c7d8b8795fd6bf5d72f8a4ef385ea03c3eaf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
// SPDX-FileCopyrightText: Copyright 2020 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "core/core.h"
#include "core/hle/kernel/k_page_heap.h"

namespace Kernel {

void KPageHeap::Initialize(PAddr address, size_t size, VAddr management_address,
                           size_t management_size, const size_t* block_shifts,
                           size_t num_block_shifts) {
    // Check our assumptions.
    ASSERT(Common::IsAligned(address, PageSize));
    ASSERT(Common::IsAligned(size, PageSize));
    ASSERT(0 < num_block_shifts && num_block_shifts <= NumMemoryBlockPageShifts);
    const VAddr management_end = management_address + management_size;

    // Set our members.
    m_heap_address = address;
    m_heap_size = size;
    m_num_blocks = num_block_shifts;

    // Setup bitmaps.
    m_management_data.resize(management_size / sizeof(u64));
    u64* cur_bitmap_storage{m_management_data.data()};
    for (size_t i = 0; i < num_block_shifts; i++) {
        const size_t cur_block_shift = block_shifts[i];
        const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
        cur_bitmap_storage = m_blocks[i].Initialize(m_heap_address, m_heap_size, cur_block_shift,
                                                    next_block_shift, cur_bitmap_storage);
    }

    // Ensure we didn't overextend our bounds.
    ASSERT(VAddr(cur_bitmap_storage) <= management_end);
}

size_t KPageHeap::GetNumFreePages() const {
    size_t num_free = 0;

    for (size_t i = 0; i < m_num_blocks; i++) {
        num_free += m_blocks[i].GetNumFreePages();
    }

    return num_free;
}

PAddr KPageHeap::AllocateByLinearSearch(s32 index) {
    const size_t needed_size = m_blocks[index].GetSize();

    for (s32 i = index; i < static_cast<s32>(m_num_blocks); i++) {
        if (const PAddr addr = m_blocks[i].PopBlock(false); addr != 0) {
            if (const size_t allocated_size = m_blocks[i].GetSize(); allocated_size > needed_size) {
                this->Free(addr + needed_size, (allocated_size - needed_size) / PageSize);
            }
            return addr;
        }
    }

    return 0;
}

PAddr KPageHeap::AllocateByRandom(s32 index, size_t num_pages, size_t align_pages) {
    // Get the size and required alignment.
    const size_t needed_size = num_pages * PageSize;
    const size_t align_size = align_pages * PageSize;

    // Determine meta-alignment of our desired alignment size.
    const size_t align_shift = std::countr_zero(align_size);

    // Decide on a block to allocate from.
    constexpr size_t MinimumPossibleAlignmentsForRandomAllocation = 4;
    {
        // By default, we'll want to look at all blocks larger than our current one.
        s32 max_blocks = static_cast<s32>(m_num_blocks);

        // Determine the maximum block we should try to allocate from.
        size_t possible_alignments = 0;
        for (s32 i = index; i < max_blocks; ++i) {
            // Add the possible alignments from blocks at the current size.
            possible_alignments += (1 + ((m_blocks[i].GetSize() - needed_size) >> align_shift)) *
                                   m_blocks[i].GetNumFreeBlocks();

            // If there are enough possible alignments, we don't need to look at larger blocks.
            if (possible_alignments >= MinimumPossibleAlignmentsForRandomAllocation) {
                max_blocks = i + 1;
                break;
            }
        }

        // If we have any possible alignments which require a larger block, we need to pick one.
        if (possible_alignments > 0 && index + 1 < max_blocks) {
            // Select a random alignment from the possibilities.
            const size_t rnd = m_rng.GenerateRandom(possible_alignments);

            // Determine which block corresponds to the random alignment we chose.
            possible_alignments = 0;
            for (s32 i = index; i < max_blocks; ++i) {
                // Add the possible alignments from blocks at the current size.
                possible_alignments +=
                    (1 + ((m_blocks[i].GetSize() - needed_size) >> align_shift)) *
                    m_blocks[i].GetNumFreeBlocks();

                // If the current block gets us to our random choice, use the current block.
                if (rnd < possible_alignments) {
                    index = i;
                    break;
                }
            }
        }
    }

    // Pop a block from the index we selected.
    if (PAddr addr = m_blocks[index].PopBlock(true); addr != 0) {
        // Determine how much size we have left over.
        if (const size_t leftover_size = m_blocks[index].GetSize() - needed_size;
            leftover_size > 0) {
            // Determine how many valid alignments we can have.
            const size_t possible_alignments = 1 + (leftover_size >> align_shift);

            // Select a random valid alignment.
            const size_t random_offset = m_rng.GenerateRandom(possible_alignments) << align_shift;

            // Free memory before the random offset.
            if (random_offset != 0) {
                this->Free(addr, random_offset / PageSize);
            }

            // Advance our block by the random offset.
            addr += random_offset;

            // Free memory after our allocated block.
            if (random_offset != leftover_size) {
                this->Free(addr + needed_size, (leftover_size - random_offset) / PageSize);
            }
        }

        // Return the block we allocated.
        return addr;
    }

    return 0;
}

void KPageHeap::FreeBlock(PAddr block, s32 index) {
    do {
        block = m_blocks[index++].PushBlock(block);
    } while (block != 0);
}

void KPageHeap::Free(PAddr addr, size_t num_pages) {
    // Freeing no pages is a no-op.
    if (num_pages == 0) {
        return;
    }

    // Find the largest block size that we can free, and free as many as possible.
    s32 big_index = static_cast<s32>(m_num_blocks) - 1;
    const PAddr start = addr;
    const PAddr end = addr + num_pages * PageSize;
    PAddr before_start = start;
    PAddr before_end = start;
    PAddr after_start = end;
    PAddr after_end = end;
    while (big_index >= 0) {
        const size_t block_size = m_blocks[big_index].GetSize();
        const PAddr big_start = Common::AlignUp(start, block_size);
        const PAddr big_end = Common::AlignDown(end, block_size);
        if (big_start < big_end) {
            // Free as many big blocks as we can.
            for (auto block = big_start; block < big_end; block += block_size) {
                this->FreeBlock(block, big_index);
            }
            before_end = big_start;
            after_start = big_end;
            break;
        }
        big_index--;
    }
    ASSERT(big_index >= 0);

    // Free space before the big blocks.
    for (s32 i = big_index - 1; i >= 0; i--) {
        const size_t block_size = m_blocks[i].GetSize();
        while (before_start + block_size <= before_end) {
            before_end -= block_size;
            this->FreeBlock(before_end, i);
        }
    }

    // Free space after the big blocks.
    for (s32 i = big_index - 1; i >= 0; i--) {
        const size_t block_size = m_blocks[i].GetSize();
        while (after_start + block_size <= after_end) {
            this->FreeBlock(after_start, i);
            after_start += block_size;
        }
    }
}

size_t KPageHeap::CalculateManagementOverheadSize(size_t region_size, const size_t* block_shifts,
                                                  size_t num_block_shifts) {
    size_t overhead_size = 0;
    for (size_t i = 0; i < num_block_shifts; i++) {
        const size_t cur_block_shift = block_shifts[i];
        const size_t next_block_shift = (i != num_block_shifts - 1) ? block_shifts[i + 1] : 0;
        overhead_size += KPageHeap::Block::CalculateManagementOverheadSize(
            region_size, cur_block_shift, next_block_shift);
    }
    return Common::AlignUp(overhead_size, PageSize);
}

} // namespace Kernel