summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/kernel.cpp
blob: e47f1deed5e2e15051dce235f10b1fb03020f7e2 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
// Copyright 2014 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <atomic>
#include <bitset>
#include <functional>
#include <memory>
#include <mutex>
#include <thread>
#include <unordered_map>
#include <utility>

#include "common/assert.h"
#include "common/logging/log.h"
#include "core/arm/arm_interface.h"
#include "core/arm/exclusive_monitor.h"
#include "core/core.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hardware_properties.h"
#include "core/hle/kernel/client_port.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/physical_core.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/synchronization.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/kernel/time_manager.h"
#include "core/hle/lock.h"
#include "core/hle/result.h"
#include "core/memory.h"

namespace Kernel {

/**
 * Callback that will wake up the thread it was scheduled for
 * @param thread_handle The handle of the thread that's been awoken
 * @param cycles_late The number of CPU cycles that have passed since the desired wakeup time
 */
static void ThreadWakeupCallback(u64 thread_handle, [[maybe_unused]] s64 cycles_late) {
    const auto proper_handle = static_cast<Handle>(thread_handle);
    const auto& system = Core::System::GetInstance();

    // Lock the global kernel mutex when we enter the kernel HLE.
    std::lock_guard lock{HLE::g_hle_lock};

    std::shared_ptr<Thread> thread =
        system.Kernel().RetrieveThreadFromGlobalHandleTable(proper_handle);
    if (thread == nullptr) {
        LOG_CRITICAL(Kernel, "Callback fired for invalid thread {:08X}", proper_handle);
        return;
    }

    bool resume = true;

    if (thread->GetStatus() == ThreadStatus::WaitSynch ||
        thread->GetStatus() == ThreadStatus::WaitHLEEvent) {
        // Remove the thread from each of its waiting objects' waitlists
        for (const auto& object : thread->GetSynchronizationObjects()) {
            object->RemoveWaitingThread(thread);
        }
        thread->ClearSynchronizationObjects();

        // Invoke the wakeup callback before clearing the wait objects
        if (thread->HasWakeupCallback()) {
            resume = thread->InvokeWakeupCallback(ThreadWakeupReason::Timeout, thread, nullptr, 0);
        }
    } else if (thread->GetStatus() == ThreadStatus::WaitMutex ||
               thread->GetStatus() == ThreadStatus::WaitCondVar) {
        thread->SetMutexWaitAddress(0);
        thread->SetWaitHandle(0);
        if (thread->GetStatus() == ThreadStatus::WaitCondVar) {
            thread->GetOwnerProcess()->RemoveConditionVariableThread(thread);
            thread->SetCondVarWaitAddress(0);
        }

        auto* const lock_owner = thread->GetLockOwner();
        // Threads waking up by timeout from WaitProcessWideKey do not perform priority inheritance
        // and don't have a lock owner unless SignalProcessWideKey was called first and the thread
        // wasn't awakened due to the mutex already being acquired.
        if (lock_owner != nullptr) {
            lock_owner->RemoveMutexWaiter(thread);
        }
    }

    if (thread->GetStatus() == ThreadStatus::WaitArb) {
        auto& address_arbiter = thread->GetOwnerProcess()->GetAddressArbiter();
        address_arbiter.HandleWakeupThread(thread);
    }

    if (resume) {
        if (thread->GetStatus() == ThreadStatus::WaitCondVar ||
            thread->GetStatus() == ThreadStatus::WaitArb) {
            thread->SetWaitSynchronizationResult(RESULT_TIMEOUT);
        }
        thread->ResumeFromWait();
    }
}

struct KernelCore::Impl {
    explicit Impl(Core::System& system, KernelCore& kernel)
        : system{system}, global_scheduler{kernel}, synchronization{system}, time_manager{system} {}

    void Initialize(KernelCore& kernel) {
        Shutdown();

        InitializePhysicalCores();
        InitializeSystemResourceLimit(kernel);
        InitializeThreads();
        InitializePreemption();
    }

    void Shutdown() {
        next_object_id = 0;
        next_kernel_process_id = Process::InitialKIPIDMin;
        next_user_process_id = Process::ProcessIDMin;
        next_thread_id = 1;

        process_list.clear();
        current_process = nullptr;

        system_resource_limit = nullptr;

        global_handle_table.Clear();
        thread_wakeup_event_type = nullptr;
        preemption_event = nullptr;

        global_scheduler.Shutdown();

        named_ports.clear();

        for (auto& core : cores) {
            core.Shutdown();
        }
        cores.clear();

        exclusive_monitor.reset();
    }

    void InitializePhysicalCores() {
        exclusive_monitor =
            Core::MakeExclusiveMonitor(system.Memory(), Core::Hardware::NUM_CPU_CORES);
        for (std::size_t i = 0; i < Core::Hardware::NUM_CPU_CORES; i++) {
            cores.emplace_back(system, i, *exclusive_monitor);
        }
    }

    // Creates the default system resource limit
    void InitializeSystemResourceLimit(KernelCore& kernel) {
        system_resource_limit = ResourceLimit::Create(kernel);

        // If setting the default system values fails, then something seriously wrong has occurred.
        ASSERT(system_resource_limit->SetLimitValue(ResourceType::PhysicalMemory, 0x200000000)
                   .IsSuccess());
        ASSERT(system_resource_limit->SetLimitValue(ResourceType::Threads, 800).IsSuccess());
        ASSERT(system_resource_limit->SetLimitValue(ResourceType::Events, 700).IsSuccess());
        ASSERT(system_resource_limit->SetLimitValue(ResourceType::TransferMemory, 200).IsSuccess());
        ASSERT(system_resource_limit->SetLimitValue(ResourceType::Sessions, 900).IsSuccess());
    }

    void InitializeThreads() {
        thread_wakeup_event_type =
            Core::Timing::CreateEvent("ThreadWakeupCallback", ThreadWakeupCallback);
    }

    void InitializePreemption() {
        preemption_event =
            Core::Timing::CreateEvent("PreemptionCallback", [this](u64 userdata, s64 cycles_late) {
                global_scheduler.PreemptThreads();
                s64 time_interval = Core::Timing::msToCycles(std::chrono::milliseconds(10));
                system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
            });

        s64 time_interval = Core::Timing::msToCycles(std::chrono::milliseconds(10));
        system.CoreTiming().ScheduleEvent(time_interval, preemption_event);
    }

    void MakeCurrentProcess(Process* process) {
        current_process = process;

        if (process == nullptr) {
            return;
        }

        for (auto& core : cores) {
            core.SetIs64Bit(process->Is64BitProcess());
        }

        system.Memory().SetCurrentPageTable(*process);
    }

    void RegisterCoreThread(std::size_t core_id) {
        std::unique_lock lock{register_thread_mutex};
        const std::thread::id this_id = std::this_thread::get_id();
        const auto it = host_thread_ids.find(this_id);
        ASSERT(core_id < Core::Hardware::NUM_CPU_CORES);
        ASSERT(it == host_thread_ids.end());
        ASSERT(!registered_core_threads[core_id]);
        host_thread_ids[this_id] = static_cast<u32>(core_id);
        registered_core_threads.set(core_id);
    }

    void RegisterHostThread() {
        std::unique_lock lock{register_thread_mutex};
        const std::thread::id this_id = std::this_thread::get_id();
        const auto it = host_thread_ids.find(this_id);
        ASSERT(it == host_thread_ids.end());
        host_thread_ids[this_id] = registered_thread_ids++;
    }

    u32 GetCurrentHostThreadID() const {
        const std::thread::id this_id = std::this_thread::get_id();
        const auto it = host_thread_ids.find(this_id);
        if (it == host_thread_ids.end()) {
            return Core::INVALID_HOST_THREAD_ID;
        }
        return it->second;
    }

    Core::EmuThreadHandle GetCurrentEmuThreadID() const {
        Core::EmuThreadHandle result = Core::EmuThreadHandle::InvalidHandle();
        result.host_handle = GetCurrentHostThreadID();
        if (result.host_handle >= Core::Hardware::NUM_CPU_CORES) {
            return result;
        }
        const Kernel::Scheduler& sched = cores[result.host_handle].Scheduler();
        const Kernel::Thread* current = sched.GetCurrentThread();
        if (current != nullptr) {
            result.guest_handle = current->GetGlobalHandle();
        } else {
            result.guest_handle = InvalidHandle;
        }
        return result;
    }

    std::atomic<u32> next_object_id{0};
    std::atomic<u64> next_kernel_process_id{Process::InitialKIPIDMin};
    std::atomic<u64> next_user_process_id{Process::ProcessIDMin};
    std::atomic<u64> next_thread_id{1};

    // Lists all processes that exist in the current session.
    std::vector<std::shared_ptr<Process>> process_list;
    Process* current_process = nullptr;
    Kernel::GlobalScheduler global_scheduler;
    Kernel::Synchronization synchronization;
    Kernel::TimeManager time_manager;

    std::shared_ptr<ResourceLimit> system_resource_limit;

    std::shared_ptr<Core::Timing::EventType> thread_wakeup_event_type;
    std::shared_ptr<Core::Timing::EventType> preemption_event;

    // This is the kernel's handle table or supervisor handle table which
    // stores all the objects in place.
    Kernel::HandleTable global_handle_table;

    /// Map of named ports managed by the kernel, which can be retrieved using
    /// the ConnectToPort SVC.
    NamedPortTable named_ports;

    std::unique_ptr<Core::ExclusiveMonitor> exclusive_monitor;
    std::vector<Kernel::PhysicalCore> cores;

    // 0-3 IDs represent core threads, >3 represent others
    std::unordered_map<std::thread::id, u32> host_thread_ids;
    u32 registered_thread_ids{Core::Hardware::NUM_CPU_CORES};
    std::bitset<Core::Hardware::NUM_CPU_CORES> registered_core_threads;
    std::mutex register_thread_mutex;

    // System context
    Core::System& system;
};

KernelCore::KernelCore(Core::System& system) : impl{std::make_unique<Impl>(system, *this)} {}
KernelCore::~KernelCore() {
    Shutdown();
}

void KernelCore::Initialize() {
    impl->Initialize(*this);
}

void KernelCore::Shutdown() {
    impl->Shutdown();
}

std::shared_ptr<ResourceLimit> KernelCore::GetSystemResourceLimit() const {
    return impl->system_resource_limit;
}

std::shared_ptr<Thread> KernelCore::RetrieveThreadFromGlobalHandleTable(Handle handle) const {
    return impl->global_handle_table.Get<Thread>(handle);
}

void KernelCore::AppendNewProcess(std::shared_ptr<Process> process) {
    impl->process_list.push_back(std::move(process));
}

void KernelCore::MakeCurrentProcess(Process* process) {
    impl->MakeCurrentProcess(process);
}

Process* KernelCore::CurrentProcess() {
    return impl->current_process;
}

const Process* KernelCore::CurrentProcess() const {
    return impl->current_process;
}

const std::vector<std::shared_ptr<Process>>& KernelCore::GetProcessList() const {
    return impl->process_list;
}

Kernel::GlobalScheduler& KernelCore::GlobalScheduler() {
    return impl->global_scheduler;
}

const Kernel::GlobalScheduler& KernelCore::GlobalScheduler() const {
    return impl->global_scheduler;
}

Kernel::Scheduler& KernelCore::Scheduler(std::size_t id) {
    return impl->cores[id].Scheduler();
}

const Kernel::Scheduler& KernelCore::Scheduler(std::size_t id) const {
    return impl->cores[id].Scheduler();
}

Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) {
    return impl->cores[id];
}

const Kernel::PhysicalCore& KernelCore::PhysicalCore(std::size_t id) const {
    return impl->cores[id];
}

Kernel::Synchronization& KernelCore::Synchronization() {
    return impl->synchronization;
}

const Kernel::Synchronization& KernelCore::Synchronization() const {
    return impl->synchronization;
}

Kernel::TimeManager& KernelCore::TimeManager() {
    return impl->time_manager;
}

const Kernel::TimeManager& KernelCore::TimeManager() const {
    return impl->time_manager;
}

Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() {
    return *impl->exclusive_monitor;
}

const Core::ExclusiveMonitor& KernelCore::GetExclusiveMonitor() const {
    return *impl->exclusive_monitor;
}

void KernelCore::InvalidateAllInstructionCaches() {
    for (std::size_t i = 0; i < impl->global_scheduler.CpuCoresCount(); i++) {
        PhysicalCore(i).ArmInterface().ClearInstructionCache();
    }
}

void KernelCore::PrepareReschedule(std::size_t id) {
    if (id < impl->global_scheduler.CpuCoresCount()) {
        impl->cores[id].Stop();
    }
}

void KernelCore::AddNamedPort(std::string name, std::shared_ptr<ClientPort> port) {
    impl->named_ports.emplace(std::move(name), std::move(port));
}

KernelCore::NamedPortTable::iterator KernelCore::FindNamedPort(const std::string& name) {
    return impl->named_ports.find(name);
}

KernelCore::NamedPortTable::const_iterator KernelCore::FindNamedPort(
    const std::string& name) const {
    return impl->named_ports.find(name);
}

bool KernelCore::IsValidNamedPort(NamedPortTable::const_iterator port) const {
    return port != impl->named_ports.cend();
}

u32 KernelCore::CreateNewObjectID() {
    return impl->next_object_id++;
}

u64 KernelCore::CreateNewThreadID() {
    return impl->next_thread_id++;
}

u64 KernelCore::CreateNewKernelProcessID() {
    return impl->next_kernel_process_id++;
}

u64 KernelCore::CreateNewUserProcessID() {
    return impl->next_user_process_id++;
}

const std::shared_ptr<Core::Timing::EventType>& KernelCore::ThreadWakeupCallbackEventType() const {
    return impl->thread_wakeup_event_type;
}

Kernel::HandleTable& KernelCore::GlobalHandleTable() {
    return impl->global_handle_table;
}

const Kernel::HandleTable& KernelCore::GlobalHandleTable() const {
    return impl->global_handle_table;
}

void KernelCore::RegisterCoreThread(std::size_t core_id) {
    impl->RegisterCoreThread(core_id);
}

void KernelCore::RegisterHostThread() {
    impl->RegisterHostThread();
}

u32 KernelCore::GetCurrentHostThreadID() const {
    return impl->GetCurrentHostThreadID();
}

Core::EmuThreadHandle KernelCore::GetCurrentEmuThreadID() const {
    return impl->GetCurrentEmuThreadID();
}

} // namespace Kernel