summaryrefslogtreecommitdiffstats
path: root/src/core/hle/kernel/process_capability.cpp
blob: 773319ad8582a1c3c65567b6a6b7f61f1a3b01bb (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <bit>

#include "common/bit_util.h"
#include "common/logging/log.h"
#include "core/hle/kernel/k_handle_table.h"
#include "core/hle/kernel/k_page_table.h"
#include "core/hle/kernel/process_capability.h"
#include "core/hle/kernel/svc_results.h"

namespace Kernel {
namespace {

// clang-format off

// Shift offsets for kernel capability types.
enum : u32 {
    CapabilityOffset_PriorityAndCoreNum = 3,
    CapabilityOffset_Syscall            = 4,
    CapabilityOffset_MapPhysical        = 6,
    CapabilityOffset_MapIO              = 7,
    CapabilityOffset_MapRegion          = 10,
    CapabilityOffset_Interrupt          = 11,
    CapabilityOffset_ProgramType        = 13,
    CapabilityOffset_KernelVersion      = 14,
    CapabilityOffset_HandleTableSize    = 15,
    CapabilityOffset_Debug              = 16,
};

// Combined mask of all parameters that may be initialized only once.
constexpr u32 InitializeOnceMask = (1U << CapabilityOffset_PriorityAndCoreNum) |
                                   (1U << CapabilityOffset_ProgramType) |
                                   (1U << CapabilityOffset_KernelVersion) |
                                   (1U << CapabilityOffset_HandleTableSize) |
                                   (1U << CapabilityOffset_Debug);

// Packed kernel version indicating 10.4.0
constexpr u32 PackedKernelVersion = 0x520000;

// Indicates possible types of capabilities that can be specified.
enum class CapabilityType : u32 {
    Unset              = 0U,
    PriorityAndCoreNum = (1U << CapabilityOffset_PriorityAndCoreNum) - 1,
    Syscall            = (1U << CapabilityOffset_Syscall) - 1,
    MapPhysical        = (1U << CapabilityOffset_MapPhysical) - 1,
    MapIO              = (1U << CapabilityOffset_MapIO) - 1,
    MapRegion          = (1U << CapabilityOffset_MapRegion) - 1,
    Interrupt          = (1U << CapabilityOffset_Interrupt) - 1,
    ProgramType        = (1U << CapabilityOffset_ProgramType) - 1,
    KernelVersion      = (1U << CapabilityOffset_KernelVersion) - 1,
    HandleTableSize    = (1U << CapabilityOffset_HandleTableSize) - 1,
    Debug              = (1U << CapabilityOffset_Debug) - 1,
    Ignorable          = 0xFFFFFFFFU,
};

// clang-format on

constexpr CapabilityType GetCapabilityType(u32 value) {
    return static_cast<CapabilityType>((~value & (value + 1)) - 1);
}

u32 GetFlagBitOffset(CapabilityType type) {
    const auto value = static_cast<u32>(type);
    return static_cast<u32>(Common::BitSize<u32>() - static_cast<u32>(std::countl_zero(value)));
}

} // Anonymous namespace

Result ProcessCapabilities::InitializeForKernelProcess(const u32* capabilities,
                                                       std::size_t num_capabilities,
                                                       KPageTable& page_table) {
    Clear();

    // Allow all cores and priorities.
    core_mask = 0xF;
    priority_mask = 0xFFFFFFFFFFFFFFFF;
    kernel_version = PackedKernelVersion;

    return ParseCapabilities(capabilities, num_capabilities, page_table);
}

Result ProcessCapabilities::InitializeForUserProcess(const u32* capabilities,
                                                     std::size_t num_capabilities,
                                                     KPageTable& page_table) {
    Clear();

    return ParseCapabilities(capabilities, num_capabilities, page_table);
}

void ProcessCapabilities::InitializeForMetadatalessProcess() {
    // Allow all cores and priorities
    core_mask = 0xF;
    priority_mask = 0xFFFFFFFFFFFFFFFF;
    kernel_version = PackedKernelVersion;

    // Allow all system calls and interrupts.
    svc_capabilities.set();
    interrupt_capabilities.set();

    // Allow using the maximum possible amount of handles
    handle_table_size = static_cast<s32>(KHandleTable::MaxTableSize);

    // Allow all debugging capabilities.
    is_debuggable = true;
    can_force_debug = true;
}

Result ProcessCapabilities::ParseCapabilities(const u32* capabilities, std::size_t num_capabilities,
                                              KPageTable& page_table) {
    u32 set_flags = 0;
    u32 set_svc_bits = 0;

    for (std::size_t i = 0; i < num_capabilities; ++i) {
        const u32 descriptor = capabilities[i];
        const auto type = GetCapabilityType(descriptor);

        if (type == CapabilityType::MapPhysical) {
            i++;

            // The MapPhysical type uses two descriptor flags for its parameters.
            // If there's only one, then there's a problem.
            if (i >= num_capabilities) {
                LOG_ERROR(Kernel, "Invalid combination! i={}", i);
                return ResultInvalidCombination;
            }

            const auto size_flags = capabilities[i];
            if (GetCapabilityType(size_flags) != CapabilityType::MapPhysical) {
                LOG_ERROR(Kernel, "Invalid capability type! size_flags={}", size_flags);
                return ResultInvalidCombination;
            }

            const auto result = HandleMapPhysicalFlags(descriptor, size_flags, page_table);
            if (result.IsError()) {
                LOG_ERROR(Kernel, "Failed to map physical flags! descriptor={}, size_flags={}",
                          descriptor, size_flags);
                return result;
            }
        } else {
            const auto result =
                ParseSingleFlagCapability(set_flags, set_svc_bits, descriptor, page_table);
            if (result.IsError()) {
                LOG_ERROR(
                    Kernel,
                    "Failed to parse capability flag! set_flags={}, set_svc_bits={}, descriptor={}",
                    set_flags, set_svc_bits, descriptor);
                return result;
            }
        }
    }

    return ResultSuccess;
}

Result ProcessCapabilities::ParseSingleFlagCapability(u32& set_flags, u32& set_svc_bits, u32 flag,
                                                      KPageTable& page_table) {
    const auto type = GetCapabilityType(flag);

    if (type == CapabilityType::Unset) {
        return ResultInvalidArgument;
    }

    // Bail early on ignorable entries, as one would expect,
    // ignorable descriptors can be ignored.
    if (type == CapabilityType::Ignorable) {
        return ResultSuccess;
    }

    // Ensure that the give flag hasn't already been initialized before.
    // If it has been, then bail.
    const u32 flag_length = GetFlagBitOffset(type);
    const u32 set_flag = 1U << flag_length;
    if ((set_flag & set_flags & InitializeOnceMask) != 0) {
        LOG_ERROR(Kernel,
                  "Attempted to initialize flags that may only be initialized once. set_flags={}",
                  set_flags);
        return ResultInvalidCombination;
    }
    set_flags |= set_flag;

    switch (type) {
    case CapabilityType::PriorityAndCoreNum:
        return HandlePriorityCoreNumFlags(flag);
    case CapabilityType::Syscall:
        return HandleSyscallFlags(set_svc_bits, flag);
    case CapabilityType::MapIO:
        return HandleMapIOFlags(flag, page_table);
    case CapabilityType::MapRegion:
        return HandleMapRegionFlags(flag, page_table);
    case CapabilityType::Interrupt:
        return HandleInterruptFlags(flag);
    case CapabilityType::ProgramType:
        return HandleProgramTypeFlags(flag);
    case CapabilityType::KernelVersion:
        return HandleKernelVersionFlags(flag);
    case CapabilityType::HandleTableSize:
        return HandleHandleTableFlags(flag);
    case CapabilityType::Debug:
        return HandleDebugFlags(flag);
    default:
        break;
    }

    LOG_ERROR(Kernel, "Invalid capability type! type={}", type);
    return ResultInvalidArgument;
}

void ProcessCapabilities::Clear() {
    svc_capabilities.reset();
    interrupt_capabilities.reset();

    core_mask = 0;
    priority_mask = 0;

    handle_table_size = 0;
    kernel_version = 0;

    program_type = ProgramType::SysModule;

    is_debuggable = false;
    can_force_debug = false;
}

Result ProcessCapabilities::HandlePriorityCoreNumFlags(u32 flags) {
    if (priority_mask != 0 || core_mask != 0) {
        LOG_ERROR(Kernel, "Core or priority mask are not zero! priority_mask={}, core_mask={}",
                  priority_mask, core_mask);
        return ResultInvalidArgument;
    }

    const u32 core_num_min = (flags >> 16) & 0xFF;
    const u32 core_num_max = (flags >> 24) & 0xFF;
    if (core_num_min > core_num_max) {
        LOG_ERROR(Kernel, "Core min is greater than core max! core_num_min={}, core_num_max={}",
                  core_num_min, core_num_max);
        return ResultInvalidCombination;
    }

    const u32 priority_min = (flags >> 10) & 0x3F;
    const u32 priority_max = (flags >> 4) & 0x3F;
    if (priority_min > priority_max) {
        LOG_ERROR(Kernel,
                  "Priority min is greater than priority max! priority_min={}, priority_max={}",
                  core_num_min, priority_max);
        return ResultInvalidCombination;
    }

    // The switch only has 4 usable cores.
    if (core_num_max >= 4) {
        LOG_ERROR(Kernel, "Invalid max cores specified! core_num_max={}", core_num_max);
        return ResultInvalidCoreId;
    }

    const auto make_mask = [](u64 min, u64 max) {
        const u64 range = max - min + 1;
        const u64 mask = (1ULL << range) - 1;

        return mask << min;
    };

    core_mask = make_mask(core_num_min, core_num_max);
    priority_mask = make_mask(priority_min, priority_max);
    return ResultSuccess;
}

Result ProcessCapabilities::HandleSyscallFlags(u32& set_svc_bits, u32 flags) {
    const u32 index = flags >> 29;
    const u32 svc_bit = 1U << index;

    // If we've already set this svc before, bail.
    if ((set_svc_bits & svc_bit) != 0) {
        return ResultInvalidCombination;
    }
    set_svc_bits |= svc_bit;

    const u32 svc_mask = (flags >> 5) & 0xFFFFFF;
    for (u32 i = 0; i < 24; ++i) {
        const u32 svc_number = index * 24 + i;

        if ((svc_mask & (1U << i)) == 0) {
            continue;
        }

        svc_capabilities[svc_number] = true;
    }

    return ResultSuccess;
}

Result ProcessCapabilities::HandleMapPhysicalFlags(u32 flags, u32 size_flags,
                                                   KPageTable& page_table) {
    // TODO(Lioncache): Implement once the memory manager can handle this.
    return ResultSuccess;
}

Result ProcessCapabilities::HandleMapIOFlags(u32 flags, KPageTable& page_table) {
    // TODO(Lioncache): Implement once the memory manager can handle this.
    return ResultSuccess;
}

Result ProcessCapabilities::HandleMapRegionFlags(u32 flags, KPageTable& page_table) {
    // TODO(Lioncache): Implement once the memory manager can handle this.
    return ResultSuccess;
}

Result ProcessCapabilities::HandleInterruptFlags(u32 flags) {
    constexpr u32 interrupt_ignore_value = 0x3FF;
    const u32 interrupt0 = (flags >> 12) & 0x3FF;
    const u32 interrupt1 = (flags >> 22) & 0x3FF;

    for (u32 interrupt : {interrupt0, interrupt1}) {
        if (interrupt == interrupt_ignore_value) {
            continue;
        }

        // NOTE:
        // This should be checking a generic interrupt controller value
        // as part of the calculation, however, given we don't currently
        // emulate that, it's sufficient to mark every interrupt as defined.

        if (interrupt >= interrupt_capabilities.size()) {
            LOG_ERROR(Kernel, "Process interrupt capability is out of range! svc_number={}",
                      interrupt);
            return ResultOutOfRange;
        }

        interrupt_capabilities[interrupt] = true;
    }

    return ResultSuccess;
}

Result ProcessCapabilities::HandleProgramTypeFlags(u32 flags) {
    const u32 reserved = flags >> 17;
    if (reserved != 0) {
        LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
        return ResultReservedUsed;
    }

    program_type = static_cast<ProgramType>((flags >> 14) & 0b111);
    return ResultSuccess;
}

Result ProcessCapabilities::HandleKernelVersionFlags(u32 flags) {
    // Yes, the internal member variable is checked in the actual kernel here.
    // This might look odd for options that are only allowed to be initialized
    // just once, however the kernel has a separate initialization function for
    // kernel processes and userland processes. The kernel variant sets this
    // member variable ahead of time.

    const u32 major_version = kernel_version >> 19;

    if (major_version != 0 || flags < 0x80000) {
        LOG_ERROR(Kernel,
                  "Kernel version is non zero or flags are too small! major_version={}, flags={}",
                  major_version, flags);
        return ResultInvalidArgument;
    }

    kernel_version = flags;
    return ResultSuccess;
}

Result ProcessCapabilities::HandleHandleTableFlags(u32 flags) {
    const u32 reserved = flags >> 26;
    if (reserved != 0) {
        LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
        return ResultReservedUsed;
    }

    handle_table_size = static_cast<s32>((flags >> 16) & 0x3FF);
    return ResultSuccess;
}

Result ProcessCapabilities::HandleDebugFlags(u32 flags) {
    const u32 reserved = flags >> 19;
    if (reserved != 0) {
        LOG_ERROR(Kernel, "Reserved value is non-zero! reserved={}", reserved);
        return ResultReservedUsed;
    }

    is_debuggable = (flags & 0x20000) != 0;
    can_force_debug = (flags & 0x40000) != 0;
    return ResultSuccess;
}

} // namespace Kernel