1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
// Copyright 2014 Citra Emulator Project / PPSSPP Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <algorithm>
#include <cinttypes>
#include <optional>
#include <vector>
#include <boost/range/algorithm_ext/erase.hpp>
#include "common/assert.h"
#include "common/common_types.h"
#include "common/logging/log.h"
#include "common/thread_queue_list.h"
#include "core/arm/arm_interface.h"
#include "core/core.h"
#include "core/core_cpu.h"
#include "core/core_timing.h"
#include "core/core_timing_util.h"
#include "core/hle/kernel/errors.h"
#include "core/hle/kernel/handle_table.h"
#include "core/hle/kernel/kernel.h"
#include "core/hle/kernel/object.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/scheduler.h"
#include "core/hle/kernel/thread.h"
#include "core/hle/result.h"
#include "core/memory.h"
namespace Kernel {
bool Thread::ShouldWait(Thread* thread) const {
return status != ThreadStatus::Dead;
}
void Thread::Acquire(Thread* thread) {
ASSERT_MSG(!ShouldWait(thread), "object unavailable!");
}
Thread::Thread(KernelCore& kernel) : WaitObject{kernel} {}
Thread::~Thread() = default;
void Thread::Stop() {
// Cancel any outstanding wakeup events for this thread
Core::System::GetInstance().CoreTiming().UnscheduleEvent(kernel.ThreadWakeupCallbackEventType(),
callback_handle);
kernel.ThreadWakeupCallbackHandleTable().Close(callback_handle);
callback_handle = 0;
// Clean up thread from ready queue
// This is only needed when the thread is terminated forcefully (SVC TerminateProcess)
if (status == ThreadStatus::Ready || status == ThreadStatus::Paused) {
scheduler->UnscheduleThread(this, current_priority);
}
status = ThreadStatus::Dead;
WakeupAllWaitingThreads();
// Clean up any dangling references in objects that this thread was waiting for
for (auto& wait_object : wait_objects) {
wait_object->RemoveWaitingThread(this);
}
wait_objects.clear();
// Mark the TLS slot in the thread's page as free.
owner_process->FreeTLSSlot(tls_address);
}
void WaitCurrentThread_Sleep() {
Thread* thread = GetCurrentThread();
thread->SetStatus(ThreadStatus::WaitSleep);
}
void ExitCurrentThread() {
Thread* thread = GetCurrentThread();
thread->Stop();
Core::System::GetInstance().CurrentScheduler().RemoveThread(thread);
}
void Thread::WakeAfterDelay(s64 nanoseconds) {
// Don't schedule a wakeup if the thread wants to wait forever
if (nanoseconds == -1)
return;
// This function might be called from any thread so we have to be cautious and use the
// thread-safe version of ScheduleEvent.
Core::System::GetInstance().CoreTiming().ScheduleEventThreadsafe(
Core::Timing::nsToCycles(nanoseconds), kernel.ThreadWakeupCallbackEventType(),
callback_handle);
}
void Thread::CancelWakeupTimer() {
Core::System::GetInstance().CoreTiming().UnscheduleEventThreadsafe(
kernel.ThreadWakeupCallbackEventType(), callback_handle);
}
static std::optional<s32> GetNextProcessorId(u64 mask) {
for (s32 index = 0; index < Core::NUM_CPU_CORES; ++index) {
if (mask & (1ULL << index)) {
if (!Core::System::GetInstance().Scheduler(index).GetCurrentThread()) {
// Core is enabled and not running any threads, use this one
return index;
}
}
}
return {};
}
void Thread::ResumeFromWait() {
ASSERT_MSG(wait_objects.empty(), "Thread is waking up while waiting for objects");
switch (status) {
case ThreadStatus::WaitSynchAll:
case ThreadStatus::WaitSynchAny:
case ThreadStatus::WaitHLEEvent:
case ThreadStatus::WaitSleep:
case ThreadStatus::WaitIPC:
case ThreadStatus::WaitMutex:
case ThreadStatus::WaitArb:
break;
case ThreadStatus::Ready:
// The thread's wakeup callback must have already been cleared when the thread was first
// awoken.
ASSERT(wakeup_callback == nullptr);
// If the thread is waiting on multiple wait objects, it might be awoken more than once
// before actually resuming. We can ignore subsequent wakeups if the thread status has
// already been set to ThreadStatus::Ready.
return;
case ThreadStatus::Running:
DEBUG_ASSERT_MSG(false, "Thread with object id {} has already resumed.", GetObjectId());
return;
case ThreadStatus::Dead:
// This should never happen, as threads must complete before being stopped.
DEBUG_ASSERT_MSG(false, "Thread with object id {} cannot be resumed because it's DEAD.",
GetObjectId());
return;
}
wakeup_callback = nullptr;
if (activity == ThreadActivity::Paused) {
status = ThreadStatus::Paused;
return;
}
status = ThreadStatus::Ready;
ChangeScheduler();
}
/**
* Resets a thread context, making it ready to be scheduled and run by the CPU
* @param context Thread context to reset
* @param stack_top Address of the top of the stack
* @param entry_point Address of entry point for execution
* @param arg User argument for thread
*/
static void ResetThreadContext(Core::ARM_Interface::ThreadContext& context, VAddr stack_top,
VAddr entry_point, u64 arg) {
context = {};
context.cpu_registers[0] = arg;
context.pc = entry_point;
context.sp = stack_top;
// TODO(merry): Perform a hardware test to determine the below value.
// AHP = 0, DN = 1, FTZ = 1, RMode = Round towards zero
context.fpcr = 0x03C00000;
}
ResultVal<SharedPtr<Thread>> Thread::Create(KernelCore& kernel, std::string name, VAddr entry_point,
u32 priority, u64 arg, s32 processor_id,
VAddr stack_top, Process& owner_process) {
// Check if priority is in ranged. Lowest priority -> highest priority id.
if (priority > THREADPRIO_LOWEST) {
LOG_ERROR(Kernel_SVC, "Invalid thread priority: {}", priority);
return ERR_INVALID_THREAD_PRIORITY;
}
if (processor_id > THREADPROCESSORID_MAX) {
LOG_ERROR(Kernel_SVC, "Invalid processor id: {}", processor_id);
return ERR_INVALID_PROCESSOR_ID;
}
if (!Memory::IsValidVirtualAddress(owner_process, entry_point)) {
LOG_ERROR(Kernel_SVC, "(name={}): invalid entry {:016X}", name, entry_point);
// TODO (bunnei): Find the correct error code to use here
return ResultCode(-1);
}
auto& system = Core::System::GetInstance();
SharedPtr<Thread> thread(new Thread(kernel));
thread->thread_id = kernel.CreateNewThreadID();
thread->status = ThreadStatus::Dormant;
thread->entry_point = entry_point;
thread->stack_top = stack_top;
thread->tpidr_el0 = 0;
thread->nominal_priority = thread->current_priority = priority;
thread->last_running_ticks = system.CoreTiming().GetTicks();
thread->processor_id = processor_id;
thread->ideal_core = processor_id;
thread->affinity_mask = 1ULL << processor_id;
thread->wait_objects.clear();
thread->mutex_wait_address = 0;
thread->condvar_wait_address = 0;
thread->wait_handle = 0;
thread->name = std::move(name);
thread->callback_handle = kernel.ThreadWakeupCallbackHandleTable().Create(thread).Unwrap();
thread->owner_process = &owner_process;
thread->scheduler = &system.Scheduler(processor_id);
thread->scheduler->AddThread(thread, priority);
thread->tls_address = thread->owner_process->MarkNextAvailableTLSSlotAsUsed(*thread);
// TODO(peachum): move to ScheduleThread() when scheduler is added so selected core is used
// to initialize the context
ResetThreadContext(thread->context, stack_top, entry_point, arg);
return MakeResult<SharedPtr<Thread>>(std::move(thread));
}
void Thread::SetPriority(u32 priority) {
ASSERT_MSG(priority <= THREADPRIO_LOWEST && priority >= THREADPRIO_HIGHEST,
"Invalid priority value.");
nominal_priority = priority;
UpdatePriority();
}
void Thread::BoostPriority(u32 priority) {
scheduler->SetThreadPriority(this, priority);
current_priority = priority;
}
void Thread::SetWaitSynchronizationResult(ResultCode result) {
context.cpu_registers[0] = result.raw;
}
void Thread::SetWaitSynchronizationOutput(s32 output) {
context.cpu_registers[1] = output;
}
s32 Thread::GetWaitObjectIndex(WaitObject* object) const {
ASSERT_MSG(!wait_objects.empty(), "Thread is not waiting for anything");
auto match = std::find(wait_objects.rbegin(), wait_objects.rend(), object);
return static_cast<s32>(std::distance(match, wait_objects.rend()) - 1);
}
VAddr Thread::GetCommandBufferAddress() const {
// Offset from the start of TLS at which the IPC command buffer begins.
static constexpr int CommandHeaderOffset = 0x80;
return GetTLSAddress() + CommandHeaderOffset;
}
void Thread::SetStatus(ThreadStatus new_status) {
if (new_status == status) {
return;
}
if (status == ThreadStatus::Running) {
last_running_ticks = Core::System::GetInstance().CoreTiming().GetTicks();
}
status = new_status;
}
void Thread::AddMutexWaiter(SharedPtr<Thread> thread) {
if (thread->lock_owner == this) {
// If the thread is already waiting for this thread to release the mutex, ensure that the
// waiters list is consistent and return without doing anything.
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr != wait_mutex_threads.end());
return;
}
// A thread can't wait on two different mutexes at the same time.
ASSERT(thread->lock_owner == nullptr);
// Ensure that the thread is not already in the list of mutex waiters
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr == wait_mutex_threads.end());
thread->lock_owner = this;
wait_mutex_threads.emplace_back(std::move(thread));
UpdatePriority();
}
void Thread::RemoveMutexWaiter(SharedPtr<Thread> thread) {
ASSERT(thread->lock_owner == this);
// Ensure that the thread is in the list of mutex waiters
auto itr = std::find(wait_mutex_threads.begin(), wait_mutex_threads.end(), thread);
ASSERT(itr != wait_mutex_threads.end());
boost::remove_erase(wait_mutex_threads, thread);
thread->lock_owner = nullptr;
UpdatePriority();
}
void Thread::UpdatePriority() {
// Find the highest priority among all the threads that are waiting for this thread's lock
u32 new_priority = nominal_priority;
for (const auto& thread : wait_mutex_threads) {
if (thread->nominal_priority < new_priority)
new_priority = thread->nominal_priority;
}
if (new_priority == current_priority)
return;
scheduler->SetThreadPriority(this, new_priority);
current_priority = new_priority;
// Recursively update the priority of the thread that depends on the priority of this one.
if (lock_owner)
lock_owner->UpdatePriority();
}
void Thread::ChangeCore(u32 core, u64 mask) {
ideal_core = core;
affinity_mask = mask;
ChangeScheduler();
}
void Thread::ChangeScheduler() {
if (status != ThreadStatus::Ready) {
return;
}
auto& system = Core::System::GetInstance();
std::optional<s32> new_processor_id{GetNextProcessorId(affinity_mask)};
if (!new_processor_id) {
new_processor_id = processor_id;
}
if (ideal_core != -1 && system.Scheduler(ideal_core).GetCurrentThread() == nullptr) {
new_processor_id = ideal_core;
}
ASSERT(*new_processor_id < 4);
// Add thread to new core's scheduler
auto& next_scheduler = system.Scheduler(*new_processor_id);
if (*new_processor_id != processor_id) {
// Remove thread from previous core's scheduler
scheduler->RemoveThread(this);
next_scheduler.AddThread(this, current_priority);
}
processor_id = *new_processor_id;
// If the thread was ready, unschedule from the previous core and schedule on the new core
scheduler->UnscheduleThread(this, current_priority);
next_scheduler.ScheduleThread(this, current_priority);
// Change thread's scheduler
scheduler = &next_scheduler;
system.CpuCore(processor_id).PrepareReschedule();
}
bool Thread::AllWaitObjectsReady() {
return std::none_of(
wait_objects.begin(), wait_objects.end(),
[this](const SharedPtr<WaitObject>& object) { return object->ShouldWait(this); });
}
bool Thread::InvokeWakeupCallback(ThreadWakeupReason reason, SharedPtr<Thread> thread,
SharedPtr<WaitObject> object, std::size_t index) {
ASSERT(wakeup_callback);
return wakeup_callback(reason, std::move(thread), std::move(object), index);
}
void Thread::SetActivity(ThreadActivity value) {
activity = value;
if (value == ThreadActivity::Paused) {
// Set status if not waiting
if (status == ThreadStatus::Ready) {
status = ThreadStatus::Paused;
} else if (status == ThreadStatus::Running) {
status = ThreadStatus::Paused;
Core::System::GetInstance().CpuCore(processor_id).PrepareReschedule();
}
} else if (status == ThreadStatus::Paused) {
// Ready to reschedule
ResumeFromWait();
}
}
////////////////////////////////////////////////////////////////////////////////////////////////////
/**
* Gets the current thread
*/
Thread* GetCurrentThread() {
return Core::System::GetInstance().CurrentScheduler().GetCurrentThread();
}
} // namespace Kernel
|