summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/nfp/amiibo_crypto.cpp
blob: d9d0c8f623994d8fb877984be7e386eb0a76cab3 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
// SPDX-FileCopyrightText: Copyright 2022 yuzu Emulator Project
// SPDX-License-Identifier: GPL-3.0-or-later

// SPDX-FileCopyrightText: Copyright 2017 socram8888/amiitool
// SPDX-License-Identifier: MIT

#include <array>
#include <mbedtls/aes.h>
#include <mbedtls/hmac_drbg.h>

#include "common/fs/file.h"
#include "common/fs/path_util.h"
#include "common/logging/log.h"
#include "core/hle/service/mii/mii_manager.h"
#include "core/hle/service/nfp/amiibo_crypto.h"

namespace Service::NFP::AmiiboCrypto {

bool IsAmiiboValid(const EncryptedNTAG215File& ntag_file) {
    const auto& amiibo_data = ntag_file.user_memory;
    LOG_DEBUG(Service_NFP, "uuid_lock=0x{0:x}", ntag_file.static_lock);
    LOG_DEBUG(Service_NFP, "compability_container=0x{0:x}", ntag_file.compability_container);
    LOG_INFO(Service_NFP, "write_count={}", amiibo_data.write_counter);

    LOG_INFO(Service_NFP, "character_id=0x{0:x}", amiibo_data.model_info.character_id);
    LOG_INFO(Service_NFP, "character_variant={}", amiibo_data.model_info.character_variant);
    LOG_INFO(Service_NFP, "amiibo_type={}", amiibo_data.model_info.amiibo_type);
    LOG_INFO(Service_NFP, "model_number=0x{0:x}", amiibo_data.model_info.model_number);
    LOG_INFO(Service_NFP, "series={}", amiibo_data.model_info.series);
    LOG_DEBUG(Service_NFP, "fixed_value=0x{0:x}", amiibo_data.model_info.constant_value);

    LOG_DEBUG(Service_NFP, "tag_dynamic_lock=0x{0:x}", ntag_file.dynamic_lock);
    LOG_DEBUG(Service_NFP, "tag_CFG0=0x{0:x}", ntag_file.CFG0);
    LOG_DEBUG(Service_NFP, "tag_CFG1=0x{0:x}", ntag_file.CFG1);

    // Validate UUID
    constexpr u8 CT = 0x88; // As defined in `ISO / IEC 14443 - 3`
    if ((CT ^ ntag_file.uuid[0] ^ ntag_file.uuid[1] ^ ntag_file.uuid[2]) != ntag_file.uuid[3]) {
        return false;
    }
    if ((ntag_file.uuid[4] ^ ntag_file.uuid[5] ^ ntag_file.uuid[6] ^ ntag_file.uuid[7]) !=
        ntag_file.uuid[8]) {
        return false;
    }

    // Check against all know constants on an amiibo binary
    if (ntag_file.static_lock != 0xE00F) {
        return false;
    }
    if (ntag_file.compability_container != 0xEEFF10F1U) {
        return false;
    }
    if (amiibo_data.constant_value != 0xA5) {
        return false;
    }
    if (amiibo_data.model_info.constant_value != 0x02) {
        return false;
    }
    // dynamic_lock value apparently is not constant
    // ntag_file.dynamic_lock == 0x0F0001
    if (ntag_file.CFG0 != 0x04000000U) {
        return false;
    }
    if (ntag_file.CFG1 != 0x5F) {
        return false;
    }
    return true;
}

NTAG215File NfcDataToEncodedData(const EncryptedNTAG215File& nfc_data) {
    NTAG215File encoded_data{};

    memcpy(encoded_data.uuid2.data(), nfc_data.uuid.data() + 0x8, 2);
    encoded_data.static_lock = nfc_data.static_lock;
    encoded_data.compability_container = nfc_data.compability_container;
    encoded_data.unfixed_hash = nfc_data.user_memory.unfixed_hash;
    encoded_data.constant_value = nfc_data.user_memory.constant_value;
    encoded_data.write_counter = nfc_data.user_memory.write_counter;
    encoded_data.settings = nfc_data.user_memory.settings;
    encoded_data.owner_mii = nfc_data.user_memory.owner_mii;
    encoded_data.title_id = nfc_data.user_memory.title_id;
    encoded_data.applicaton_write_counter = nfc_data.user_memory.applicaton_write_counter;
    encoded_data.application_area_id = nfc_data.user_memory.application_area_id;
    encoded_data.unknown = nfc_data.user_memory.unknown;
    encoded_data.hash = nfc_data.user_memory.hash;
    encoded_data.application_area = nfc_data.user_memory.application_area;
    encoded_data.locked_hash = nfc_data.user_memory.locked_hash;
    memcpy(encoded_data.uuid.data(), nfc_data.uuid.data(), 8);
    encoded_data.model_info = nfc_data.user_memory.model_info;
    encoded_data.keygen_salt = nfc_data.user_memory.keygen_salt;
    encoded_data.dynamic_lock = nfc_data.dynamic_lock;
    encoded_data.CFG0 = nfc_data.CFG0;
    encoded_data.CFG1 = nfc_data.CFG1;
    encoded_data.password = nfc_data.password;

    return encoded_data;
}

EncryptedNTAG215File EncodedDataToNfcData(const NTAG215File& encoded_data) {
    EncryptedNTAG215File nfc_data{};

    memcpy(nfc_data.uuid.data() + 0x8, encoded_data.uuid2.data(), 2);
    memcpy(nfc_data.uuid.data(), encoded_data.uuid.data(), 8);
    nfc_data.static_lock = encoded_data.static_lock;
    nfc_data.compability_container = encoded_data.compability_container;
    nfc_data.user_memory.unfixed_hash = encoded_data.unfixed_hash;
    nfc_data.user_memory.constant_value = encoded_data.constant_value;
    nfc_data.user_memory.write_counter = encoded_data.write_counter;
    nfc_data.user_memory.settings = encoded_data.settings;
    nfc_data.user_memory.owner_mii = encoded_data.owner_mii;
    nfc_data.user_memory.title_id = encoded_data.title_id;
    nfc_data.user_memory.applicaton_write_counter = encoded_data.applicaton_write_counter;
    nfc_data.user_memory.application_area_id = encoded_data.application_area_id;
    nfc_data.user_memory.unknown = encoded_data.unknown;
    nfc_data.user_memory.hash = encoded_data.hash;
    nfc_data.user_memory.application_area = encoded_data.application_area;
    nfc_data.user_memory.locked_hash = encoded_data.locked_hash;
    nfc_data.user_memory.model_info = encoded_data.model_info;
    nfc_data.user_memory.keygen_salt = encoded_data.keygen_salt;
    nfc_data.dynamic_lock = encoded_data.dynamic_lock;
    nfc_data.CFG0 = encoded_data.CFG0;
    nfc_data.CFG1 = encoded_data.CFG1;
    nfc_data.password = encoded_data.password;

    return nfc_data;
}

u32 GetTagPassword(const TagUuid& uuid) {
    // Verifiy that the generated password is correct
    u32 password = 0xAA ^ (uuid[1] ^ uuid[3]);
    password &= (0x55 ^ (uuid[2] ^ uuid[4])) << 8;
    password &= (0xAA ^ (uuid[3] ^ uuid[5])) << 16;
    password &= (0x55 ^ (uuid[4] ^ uuid[6])) << 24;
    return password;
}

HashSeed GetSeed(const NTAG215File& data) {
    HashSeed seed{
        .data =
            {
                .magic = data.write_counter,
                .padding = {},
                .uuid1 = {},
                .uuid2 = {},
                .keygen_salt = data.keygen_salt,
            },
    };

    // Copy the first 8 bytes of uuid
    memcpy(seed.data.uuid1.data(), data.uuid.data(), sizeof(seed.data.uuid1));
    memcpy(seed.data.uuid2.data(), data.uuid.data(), sizeof(seed.data.uuid2));

    return seed;
}

void PreGenerateKey(const InternalKey& key, const HashSeed& seed, u8* output,
                    std::size_t& outputLen) {
    std::size_t index = 0;

    // Copy whole type string
    memccpy(output + index, key.type_string.data(), '\0', key.type_string.size());
    index += key.type_string.size();

    // Append (16 - magic_length) from the input seed
    std::size_t seedPart1Len = 16 - key.magic_length;
    memcpy(output + index, &seed, seedPart1Len);
    index += seedPart1Len;

    // Append all bytes from magicBytes
    memcpy(output + index, &key.magic_bytes, key.magic_length);
    index += key.magic_length;

    // Seed 16 bytes at +0x10
    memcpy(output + index, &seed.raw[0x10], 16);
    index += 16;

    // 32 bytes at +0x20 from input seed xored with xor pad
    for (std::size_t i = 0; i < 32; i++)
        output[index + i] = seed.raw[i + 32] ^ key.xor_pad[i];
    index += 32;

    outputLen = index;
}

void CryptoInit(CryptoCtx& ctx, mbedtls_md_context_t& hmac_ctx, const HmacKey& hmac_key,
                const u8* seed, std::size_t seed_size) {

    // Initialize context
    ctx.used = false;
    ctx.counter = 0;
    ctx.buffer_size = sizeof(ctx.counter) + seed_size;
    memcpy(ctx.buffer.data() + sizeof(u16), seed, seed_size);

    // Initialize HMAC context
    mbedtls_md_init(&hmac_ctx);
    mbedtls_md_setup(&hmac_ctx, mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), 1);
    mbedtls_md_hmac_starts(&hmac_ctx, hmac_key.data(), hmac_key.size());
}

void CryptoStep(CryptoCtx& ctx, mbedtls_md_context_t& hmac_ctx, DrgbOutput& output) {
    // If used at least once, reinitialize the HMAC
    if (ctx.used) {
        mbedtls_md_hmac_reset(&hmac_ctx);
    }

    ctx.used = true;

    // Store counter in big endian, and increment it
    ctx.buffer[0] = static_cast<u8>(ctx.counter >> 8);
    ctx.buffer[1] = static_cast<u8>(ctx.counter >> 0);
    ctx.counter++;

    // Do HMAC magic
    mbedtls_md_hmac_update(&hmac_ctx, reinterpret_cast<const unsigned char*>(ctx.buffer.data()),
                           ctx.buffer_size);
    mbedtls_md_hmac_finish(&hmac_ctx, output.data());
}

DerivedKeys GenerateKey(const InternalKey& key, const NTAG215File& data) {
    constexpr std::size_t OUTPUT_SIZE = 512;
    const auto seed = GetSeed(data);

    // Generate internal seed
    u8 internal_key[OUTPUT_SIZE];
    std::size_t internal_key_lenght = 0;
    PreGenerateKey(key, seed, internal_key, internal_key_lenght);

    // Initialize context
    CryptoCtx ctx{};
    mbedtls_md_context_t hmac_ctx;
    CryptoInit(ctx, hmac_ctx, key.hmac_key, internal_key, internal_key_lenght);

    // Generate derived keys
    DerivedKeys derived_keys{};
    std::array<DrgbOutput, 2> temp{};
    CryptoStep(ctx, hmac_ctx, temp[0]);
    CryptoStep(ctx, hmac_ctx, temp[1]);
    memcpy(&derived_keys, temp.data(), sizeof(DerivedKeys));

    // Cleanup context
    mbedtls_md_free(&hmac_ctx);

    return derived_keys;
}

void Cipher(const DerivedKeys& keys, const NTAG215File& in_data, NTAG215File& out_data) {
    mbedtls_aes_context aes;
    std::size_t nc_off = 0;
    std::array<u8, 0x10> nonce_counter{};
    std::array<u8, 0x10> stream_block{};

    mbedtls_aes_setkey_enc(&aes, keys.aes_key.data(), 128);
    memcpy(nonce_counter.data(), keys.aes_iv.data(), sizeof(nonce_counter));

    std::array<u8, sizeof(NTAG215File)> in_data_byes{};
    std::array<u8, sizeof(NTAG215File)> out_data_bytes{};
    memcpy(in_data_byes.data(), &in_data, sizeof(NTAG215File));
    memcpy(out_data_bytes.data(), &out_data, sizeof(NTAG215File));

    mbedtls_aes_crypt_ctr(&aes, 0x188, &nc_off, nonce_counter.data(), stream_block.data(),
                          in_data_byes.data() + 0x2c, out_data_bytes.data() + 0x2c);

    memcpy(out_data_bytes.data(), in_data_byes.data(), 0x008);
    // Data signature NOT copied
    memcpy(out_data_bytes.data() + 0x028, in_data_byes.data() + 0x028, 0x004);
    // Tag signature NOT copied
    memcpy(out_data_bytes.data() + 0x1D4, in_data_byes.data() + 0x1D4, 0x048);

    memcpy(&out_data, out_data_bytes.data(), sizeof(NTAG215File));
}

bool LoadKeys(InternalKey& locked_secret, InternalKey& unfixed_info) {
    const auto yuzu_keys_dir = Common::FS::GetYuzuPath(Common::FS::YuzuPath::KeysDir);

    const Common::FS::IOFile keys_file{yuzu_keys_dir / "key_retail.bin",
                                       Common::FS::FileAccessMode::Read,
                                       Common::FS::FileType::BinaryFile};

    if (!keys_file.IsOpen()) {
        LOG_ERROR(Service_NFP, "No keys detected");
        return false;
    }

    if (keys_file.Read(unfixed_info) != 1) {
        LOG_ERROR(Service_NFP, "Failed to read unfixed_info");
        return false;
    }
    if (keys_file.Read(locked_secret) != 1) {
        LOG_ERROR(Service_NFP, "Failed to read locked-secret");
        return false;
    }

    return true;
}

bool DecodeAmiibo(const EncryptedNTAG215File& encrypted_tag_data, NTAG215File& tag_data) {
    InternalKey locked_secret{};
    InternalKey unfixed_info{};

    if (!LoadKeys(locked_secret, unfixed_info)) {
        return false;
    }

    // Generate keys
    NTAG215File encoded_data = NfcDataToEncodedData(encrypted_tag_data);
    const auto data_keys = GenerateKey(unfixed_info, encoded_data);
    const auto tag_keys = GenerateKey(locked_secret, encoded_data);

    // Decrypt
    Cipher(data_keys, encoded_data, tag_data);

    std::array<u8, sizeof(NTAG215File)> out{};
    memcpy(out.data(), &tag_data, sizeof(NTAG215File));

    // Regenerate tag HMAC. Note: order matters, data HMAC depends on tag HMAC!
    mbedtls_md_hmac(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), tag_keys.hmac_key.data(),
                    sizeof(HmacKey), out.data() + 0x1D4, 0x34, out.data() + HMAC_POS_TAG);

    // Regenerate data HMAC
    mbedtls_md_hmac(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), data_keys.hmac_key.data(),
                    sizeof(HmacKey), out.data() + 0x29, 0x1DF, out.data() + HMAC_POS_DATA);

    memcpy(&tag_data, out.data(), sizeof(NTAG215File));

    if (memcmp(tag_data.unfixed_hash.data(), encrypted_tag_data.user_memory.unfixed_hash.data(),
               32) != 0) {
        return false;
    }

    if (memcmp(tag_data.locked_hash.data(), encrypted_tag_data.user_memory.locked_hash.data(),
               32) != 0) {
        return false;
    }

    return true;
}

bool EncodeAmiibo(const NTAG215File& tag_data, EncryptedNTAG215File& encrypted_tag_data) {
    InternalKey locked_secret{};
    InternalKey unfixed_info{};

    if (!LoadKeys(locked_secret, unfixed_info)) {
        return false;
    }

    // Generate keys
    const auto data_keys = GenerateKey(unfixed_info, tag_data);
    const auto tag_keys = GenerateKey(locked_secret, tag_data);

    std::array<u8, sizeof(NTAG215File)> plain{};
    std::array<u8, sizeof(NTAG215File)> cipher{};
    memcpy(plain.data(), &tag_data, sizeof(NTAG215File));

    // Generate tag HMAC
    mbedtls_md_hmac(mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), tag_keys.hmac_key.data(),
                    sizeof(HmacKey), plain.data() + 0x1D4, 0x34, cipher.data() + HMAC_POS_TAG);

    // Init mbedtls HMAC context
    mbedtls_md_context_t ctx;
    mbedtls_md_init(&ctx);
    mbedtls_md_setup(&ctx, mbedtls_md_info_from_type(MBEDTLS_MD_SHA256), 1);

    // Generate data HMAC
    mbedtls_md_hmac_starts(&ctx, data_keys.hmac_key.data(), sizeof(HmacKey));
    mbedtls_md_hmac_update(&ctx, plain.data() + 0x029, 0x18B);        // Data
    mbedtls_md_hmac_update(&ctx, cipher.data() + HMAC_POS_TAG, 0x20); // Tag HMAC
    mbedtls_md_hmac_update(&ctx, plain.data() + 0x1D4, 0x34);
    mbedtls_md_hmac_finish(&ctx, cipher.data() + HMAC_POS_DATA);

    // HMAC cleanup
    mbedtls_md_free(&ctx);

    // Encrypt
    NTAG215File encoded_tag_data{};
    memcpy(&encoded_tag_data, cipher.data(), sizeof(NTAG215File));
    Cipher(data_keys, tag_data, encoded_tag_data);

    // Convert back to hardware
    encrypted_tag_data = EncodedDataToNfcData(encoded_tag_data);

    return true;
}

} // namespace Service::NFP::AmiiboCrypto