summaryrefslogtreecommitdiffstats
path: root/src/core/hle/service/nwm/uds_data.cpp
blob: 8c6742dba1a5523b3932309dfb2e959182fbea28 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cstring>
#include <cryptopp/aes.h>
#include <cryptopp/ccm.h>
#include <cryptopp/filters.h>
#include <cryptopp/md5.h>
#include <cryptopp/modes.h>
#include "core/hle/service/nwm/nwm_uds.h"
#include "core/hle/service/nwm/uds_data.h"
#include "core/hw/aes/key.h"

namespace Service {
namespace NWM {

using MacAddress = std::array<u8, 6>;

/*
 * Generates a SNAP-enabled 802.2 LLC header for the specified protocol.
 * @returns a buffer with the bytes of the generated header.
 */
static std::vector<u8> GenerateLLCHeader(EtherType protocol) {
    LLCHeader header{};
    header.protocol = static_cast<u16>(protocol);

    std::vector<u8> buffer(sizeof(header));
    memcpy(buffer.data(), &header, sizeof(header));

    return buffer;
}

/*
 * Generates a Nintendo UDS SecureData header with the specified parameters.
 * @returns a buffer with the bytes of the generated header.
 */
static std::vector<u8> GenerateSecureDataHeader(u16 data_size, u8 channel, u16 dest_node_id,
                                                u16 src_node_id, u16 sequence_number) {
    SecureDataHeader header{};
    header.protocol_size = data_size + sizeof(SecureDataHeader);
    // Note: This size includes everything except the first 4 bytes of the structure,
    // reinforcing the hypotheses that the first 4 bytes are actually the header of
    // another container protocol.
    header.securedata_size = data_size + sizeof(SecureDataHeader) - 4;
    // Frames sent by the emulated application are never UDS management frames
    header.is_management = 0;
    header.data_channel = channel;
    header.sequence_number = sequence_number;
    header.dest_node_id = dest_node_id;
    header.src_node_id = src_node_id;

    std::vector<u8> buffer(sizeof(header));
    memcpy(buffer.data(), &header, sizeof(header));

    return buffer;
}

/*
 * Calculates the CTR used for the AES-CTR process that calculates
 * the CCMP crypto key for data frames.
 * @returns The CTR used for data frames crypto key generation.
 */
static std::array<u8, CryptoPP::MD5::DIGESTSIZE> GetDataCryptoCTR(const NetworkInfo& network_info) {
    DataFrameCryptoCTR data{};

    data.host_mac = network_info.host_mac_address;
    data.wlan_comm_id = network_info.wlan_comm_id;
    data.id = network_info.id;
    data.network_id = network_info.network_id;

    std::array<u8, CryptoPP::MD5::DIGESTSIZE> hash;
    CryptoPP::MD5().CalculateDigest(hash.data(), reinterpret_cast<u8*>(&data), sizeof(data));

    return hash;
}

/*
 * Generates the key used for encrypting the 802.11 data frames generated by UDS.
 * @returns The key used for data frames crypto.
 */
static std::array<u8, CryptoPP::AES::BLOCKSIZE> GenerateDataCCMPKey(
    const std::vector<u8>& passphrase, const NetworkInfo& network_info) {
    // Calculate the MD5 hash of the input passphrase.
    std::array<u8, CryptoPP::MD5::DIGESTSIZE> passphrase_hash;
    CryptoPP::MD5().CalculateDigest(passphrase_hash.data(), passphrase.data(), passphrase.size());

    std::array<u8, CryptoPP::AES::BLOCKSIZE> ccmp_key;

    // The CCMP key is the result of encrypting the MD5 hash of the passphrase with AES-CTR using
    // keyslot 0x2D.
    using CryptoPP::AES;
    std::array<u8, CryptoPP::MD5::DIGESTSIZE> counter = GetDataCryptoCTR(network_info);
    std::array<u8, AES::BLOCKSIZE> key = HW::AES::GetNormalKey(HW::AES::KeySlotID::UDSDataKey);
    CryptoPP::CTR_Mode<AES>::Encryption aes;
    aes.SetKeyWithIV(key.data(), AES::BLOCKSIZE, counter.data());
    aes.ProcessData(ccmp_key.data(), passphrase_hash.data(), passphrase_hash.size());

    return ccmp_key;
}

/*
 * Generates the Additional Authenticated Data (AAD) for an UDS 802.11 encrypted data frame.
 * @returns a buffer with the bytes of the AAD.
 */
static std::vector<u8> GenerateCCMPAAD(const MacAddress& sender, const MacAddress& receiver,
                                       const MacAddress& bssid, u16 frame_control) {
    // Reference: IEEE 802.11-2007

    // 8.3.3.3.2 Construct AAD (22-30 bytes)
    // The AAD is constructed from the MPDU header. The AAD does not include the header Duration
    // field, because the Duration field value can change due to normal IEEE 802.11 operation (e.g.,
    // a rate change during retransmission). For similar reasons, several subfields in the Frame
    // Control field are masked to 0.
    struct {
        u16_be FC; // MPDU Frame Control field
        MacAddress A1;
        MacAddress A2;
        MacAddress A3;
        u16_be SC; // MPDU Sequence Control field
    } aad_struct{};

    constexpr u16 AADFrameControlMask = 0x8FC7;
    aad_struct.FC = frame_control & AADFrameControlMask;
    aad_struct.SC = 0;

    bool to_ds = (frame_control & (1 << 0)) != 0;
    bool from_ds = (frame_control & (1 << 1)) != 0;
    // In the 802.11 standard, ToDS = 1 and FromDS = 1 is a valid configuration,
    // however, the 3DS doesn't seem to transmit frames with such combination.
    ASSERT_MSG(to_ds != from_ds, "Invalid combination");

    // The meaning of the address fields depends on the ToDS and FromDS fields.
    if (from_ds) {
        aad_struct.A1 = receiver;
        aad_struct.A2 = bssid;
        aad_struct.A3 = sender;
    }

    if (to_ds) {
        aad_struct.A1 = bssid;
        aad_struct.A2 = sender;
        aad_struct.A3 = receiver;
    }

    std::vector<u8> aad(sizeof(aad_struct));
    std::memcpy(aad.data(), &aad_struct, sizeof(aad_struct));

    return aad;
}

/*
 * Decrypts the payload of an encrypted 802.11 data frame using the specified key.
 * @returns The decrypted payload.
 */
static std::vector<u8> DecryptDataFrame(const std::vector<u8>& encrypted_payload,
                                        const std::array<u8, CryptoPP::AES::BLOCKSIZE>& ccmp_key,
                                        const MacAddress& sender, const MacAddress& receiver,
                                        const MacAddress& bssid, u16 sequence_number,
                                        u16 frame_control) {

    // Reference: IEEE 802.11-2007

    std::vector<u8> aad = GenerateCCMPAAD(sender, receiver, bssid, frame_control);

    std::vector<u8> packet_number{0,
                                  0,
                                  0,
                                  0,
                                  static_cast<u8>((sequence_number >> 8) & 0xFF),
                                  static_cast<u8>(sequence_number & 0xFF)};

    // 8.3.3.3.3 Construct CCM nonce (13 bytes)
    std::vector<u8> nonce;
    nonce.push_back(0);                                                    // priority
    nonce.insert(nonce.end(), sender.begin(), sender.end());               // Address 2
    nonce.insert(nonce.end(), packet_number.begin(), packet_number.end()); // PN

    try {
        CryptoPP::CCM<CryptoPP::AES, 8>::Decryption d;
        d.SetKeyWithIV(ccmp_key.data(), ccmp_key.size(), nonce.data(), nonce.size());
        d.SpecifyDataLengths(aad.size(), encrypted_payload.size() - 8, 0);

        CryptoPP::AuthenticatedDecryptionFilter df(
            d, nullptr, CryptoPP::AuthenticatedDecryptionFilter::MAC_AT_END |
                            CryptoPP::AuthenticatedDecryptionFilter::THROW_EXCEPTION);
        // put aad
        df.ChannelPut(CryptoPP::AAD_CHANNEL, aad.data(), aad.size());

        // put cipher with mac
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL, encrypted_payload.data(),
                      encrypted_payload.size() - 8);
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL,
                      encrypted_payload.data() + encrypted_payload.size() - 8, 8);

        df.ChannelMessageEnd(CryptoPP::AAD_CHANNEL);
        df.ChannelMessageEnd(CryptoPP::DEFAULT_CHANNEL);
        df.SetRetrievalChannel(CryptoPP::DEFAULT_CHANNEL);

        int size = df.MaxRetrievable();

        std::vector<u8> pdata(size);
        df.Get(pdata.data(), size);
        return pdata;
    } catch (CryptoPP::Exception&) {
        LOG_ERROR(Service_NWM, "failed to decrypt");
    }

    return {};
}

/*
 * Encrypts the payload of an 802.11 data frame using the specified key.
 * @returns The encrypted payload.
 */
static std::vector<u8> EncryptDataFrame(const std::vector<u8>& payload,
                                        const std::array<u8, CryptoPP::AES::BLOCKSIZE>& ccmp_key,
                                        const MacAddress& sender, const MacAddress& receiver,
                                        const MacAddress& bssid, u16 sequence_number,
                                        u16 frame_control) {
    // Reference: IEEE 802.11-2007

    std::vector<u8> aad = GenerateCCMPAAD(sender, receiver, bssid, frame_control);

    std::vector<u8> packet_number{0,
                                  0,
                                  0,
                                  0,
                                  static_cast<u8>((sequence_number >> 8) & 0xFF),
                                  static_cast<u8>(sequence_number & 0xFF)};

    // 8.3.3.3.3 Construct CCM nonce (13 bytes)
    std::vector<u8> nonce;
    nonce.push_back(0);                                                    // priority
    nonce.insert(nonce.end(), sender.begin(), sender.end());               // Address 2
    nonce.insert(nonce.end(), packet_number.begin(), packet_number.end()); // PN

    try {
        CryptoPP::CCM<CryptoPP::AES, 8>::Encryption d;
        d.SetKeyWithIV(ccmp_key.data(), ccmp_key.size(), nonce.data(), nonce.size());
        d.SpecifyDataLengths(aad.size(), payload.size(), 0);

        CryptoPP::AuthenticatedEncryptionFilter df(d);
        // put aad
        df.ChannelPut(CryptoPP::AAD_CHANNEL, aad.data(), aad.size());
        df.ChannelMessageEnd(CryptoPP::AAD_CHANNEL);

        // put plaintext
        df.ChannelPut(CryptoPP::DEFAULT_CHANNEL, payload.data(), payload.size());
        df.ChannelMessageEnd(CryptoPP::DEFAULT_CHANNEL);

        df.SetRetrievalChannel(CryptoPP::DEFAULT_CHANNEL);

        int size = df.MaxRetrievable();

        std::vector<u8> cipher(size);
        df.Get(cipher.data(), size);
        return cipher;
    } catch (CryptoPP::Exception&) {
        LOG_ERROR(Service_NWM, "failed to encrypt");
    }

    return {};
}

std::vector<u8> GenerateDataPayload(const std::vector<u8>& data, u8 channel, u16 dest_node,
                                    u16 src_node, u16 sequence_number) {
    std::vector<u8> buffer = GenerateLLCHeader(EtherType::SecureData);
    std::vector<u8> securedata_header =
        GenerateSecureDataHeader(data.size(), channel, dest_node, src_node, sequence_number);

    buffer.insert(buffer.end(), securedata_header.begin(), securedata_header.end());
    buffer.insert(buffer.end(), data.begin(), data.end());
    return buffer;
}

} // namespace NWM
} // namespace Service