summaryrefslogtreecommitdiffstats
path: root/src/core/host_timing.cpp
blob: c02f571c673f8141ae9a4c5a2084c7239c160179 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include "core/host_timing.h"

#include <algorithm>
#include <mutex>
#include <string>
#include <tuple>

#include "common/assert.h"
#include "common/thread.h"
#include "core/core_timing_util.h"

namespace Core::HostTiming {

std::shared_ptr<EventType> CreateEvent(std::string name, TimedCallback&& callback) {
    return std::make_shared<EventType>(std::move(callback), std::move(name));
}

struct CoreTiming::Event {
    u64 time;
    u64 fifo_order;
    u64 userdata;
    std::weak_ptr<EventType> type;

    // Sort by time, unless the times are the same, in which case sort by
    // the order added to the queue
    friend bool operator>(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) > std::tie(right.time, right.fifo_order);
    }

    friend bool operator<(const Event& left, const Event& right) {
        return std::tie(left.time, left.fifo_order) < std::tie(right.time, right.fifo_order);
    }
};

CoreTiming::CoreTiming() = default;
CoreTiming::~CoreTiming() = default;

void CoreTiming::ThreadEntry(CoreTiming& instance) {
    instance.Advance();
}

void CoreTiming::Initialize() {
    event_fifo_id = 0;
    const auto empty_timed_callback = [](u64, s64) {};
    ev_lost = CreateEvent("_lost_event", empty_timed_callback);
    start_time = std::chrono::system_clock::now();
    timer_thread = std::make_unique<std::thread>(ThreadEntry, std::ref(*this));
}

void CoreTiming::Shutdown() {
    std::unique_lock<std::mutex> guard(inner_mutex);
    shutting_down = true;
    if (!is_set) {
        is_set = true;
        condvar.notify_one();
    }
    inner_mutex.unlock();
    timer_thread->join();
    ClearPendingEvents();
}

void CoreTiming::ScheduleEvent(s64 ns_into_future, const std::shared_ptr<EventType>& event_type,
                               u64 userdata) {
    std::lock_guard guard{inner_mutex};
    const u64 timeout = static_cast<u64>(GetGlobalTimeNs().count() + ns_into_future);

    event_queue.emplace_back(Event{timeout, event_fifo_id++, userdata, event_type});

    std::push_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    if (!is_set) {
        is_set = true;
        condvar.notify_one();
    }
}

void CoreTiming::UnscheduleEvent(const std::shared_ptr<EventType>& event_type, u64 userdata) {
    std::lock_guard guard{inner_mutex};

    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
        return e.type.lock().get() == event_type.get() && e.userdata == userdata;
    });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

u64 CoreTiming::GetCPUTicks() const {
    std::chrono::nanoseconds time_now = GetGlobalTimeNs();
    return Core::Timing::nsToCycles(time_now);
}

u64 CoreTiming::GetClockTicks() const {
    std::chrono::nanoseconds time_now = GetGlobalTimeNs();
    return Core::Timing::nsToClockCycles(time_now);
}

void CoreTiming::ClearPendingEvents() {
    event_queue.clear();
}

void CoreTiming::RemoveEvent(const std::shared_ptr<EventType>& event_type) {
    std::lock_guard guard{inner_mutex};

    const auto itr = std::remove_if(event_queue.begin(), event_queue.end(), [&](const Event& e) {
        return e.type.lock().get() == event_type.get();
    });

    // Removing random items breaks the invariant so we have to re-establish it.
    if (itr != event_queue.end()) {
        event_queue.erase(itr, event_queue.end());
        std::make_heap(event_queue.begin(), event_queue.end(), std::greater<>());
    }
}

void CoreTiming::Advance() {
    while (true) {
        std::unique_lock<std::mutex> guard(inner_mutex);

        global_timer = GetGlobalTimeNs().count();

        while (!event_queue.empty() && event_queue.front().time <= global_timer) {
            Event evt = std::move(event_queue.front());
            std::pop_heap(event_queue.begin(), event_queue.end(), std::greater<>());
            event_queue.pop_back();
            inner_mutex.unlock();

            if (auto event_type{evt.type.lock()}) {
                event_type->callback(evt.userdata, global_timer - evt.time);
            }

            inner_mutex.lock();
        }
        auto next_time = std::chrono::nanoseconds(event_queue.front().time - global_timer);
        condvar.wait_for(guard, next_time, [this] { return is_set; });
        is_set = false;
        if (shutting_down) {
            break;
        }
    }
}

std::chrono::nanoseconds CoreTiming::GetGlobalTimeNs() const {
    sys_time_point current = std::chrono::system_clock::now();
    auto elapsed = current - start_time;
    return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
}

std::chrono::microseconds CoreTiming::GetGlobalTimeUs() const {
    sys_time_point current = std::chrono::system_clock::now();
    auto elapsed = current - start_time;
    return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
}

} // namespace Core::Timing