summaryrefslogtreecommitdiffstats
path: root/src/input_common/gcadapter/gc_adapter.cpp
blob: a2f1bb67c8368a66a06c9a220b89bcec95d89c85 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
// Copyright 2014 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <chrono>
#include <thread>

#include <libusb.h>

#include "common/logging/log.h"
#include "common/param_package.h"
#include "common/settings_input.h"
#include "input_common/gcadapter/gc_adapter.h"

namespace GCAdapter {

Adapter::Adapter() {
    if (usb_adapter_handle != nullptr) {
        return;
    }
    LOG_INFO(Input, "GC Adapter Initialization started");

    const int init_res = libusb_init(&libusb_ctx);
    if (init_res == LIBUSB_SUCCESS) {
        adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
    } else {
        LOG_ERROR(Input, "libusb could not be initialized. failed with error = {}", init_res);
    }
}

Adapter::~Adapter() {
    Reset();
}

void Adapter::AdapterInputThread() {
    LOG_DEBUG(Input, "GC Adapter input thread started");
    s32 payload_size{};
    AdapterPayload adapter_payload{};

    if (adapter_scan_thread.joinable()) {
        adapter_scan_thread.join();
    }

    while (adapter_input_thread_running) {
        libusb_interrupt_transfer(usb_adapter_handle, input_endpoint, adapter_payload.data(),
                                  static_cast<s32>(adapter_payload.size()), &payload_size, 16);
        if (IsPayloadCorrect(adapter_payload, payload_size)) {
            UpdateControllers(adapter_payload);
            UpdateVibrations();
        }
        std::this_thread::yield();
    }

    if (restart_scan_thread) {
        adapter_scan_thread = std::thread(&Adapter::AdapterScanThread, this);
        restart_scan_thread = false;
    }
}

bool Adapter::IsPayloadCorrect(const AdapterPayload& adapter_payload, s32 payload_size) {
    if (payload_size != static_cast<s32>(adapter_payload.size()) ||
        adapter_payload[0] != LIBUSB_DT_HID) {
        LOG_DEBUG(Input, "Error reading payload (size: {}, type: {:02x})", payload_size,
                  adapter_payload[0]);
        if (input_error_counter++ > 20) {
            LOG_ERROR(Input, "GC adapter timeout, Is the adapter connected?");
            adapter_input_thread_running = false;
            restart_scan_thread = true;
        }
        return false;
    }

    input_error_counter = 0;
    return true;
}

void Adapter::UpdateControllers(const AdapterPayload& adapter_payload) {
    for (std::size_t port = 0; port < pads.size(); ++port) {
        const std::size_t offset = 1 + (9 * port);
        const auto type = static_cast<ControllerTypes>(adapter_payload[offset] >> 4);
        UpdatePadType(port, type);
        if (DeviceConnected(port)) {
            const u8 b1 = adapter_payload[offset + 1];
            const u8 b2 = adapter_payload[offset + 2];
            UpdateStateButtons(port, b1, b2);
            UpdateStateAxes(port, adapter_payload);
            if (configuring) {
                UpdateYuzuSettings(port);
            }
        }
    }
}

void Adapter::UpdatePadType(std::size_t port, ControllerTypes pad_type) {
    if (pads[port].type == pad_type) {
        return;
    }
    // Device changed reset device and set new type
    ResetDevice(port);
    pads[port].type = pad_type;
}

void Adapter::UpdateStateButtons(std::size_t port, u8 b1, u8 b2) {
    if (port >= pads.size()) {
        return;
    }

    static constexpr std::array<PadButton, 8> b1_buttons{
        PadButton::ButtonA,    PadButton::ButtonB,     PadButton::ButtonX,    PadButton::ButtonY,
        PadButton::ButtonLeft, PadButton::ButtonRight, PadButton::ButtonDown, PadButton::ButtonUp,
    };

    static constexpr std::array<PadButton, 4> b2_buttons{
        PadButton::ButtonStart,
        PadButton::TriggerZ,
        PadButton::TriggerR,
        PadButton::TriggerL,
    };
    pads[port].buttons = 0;
    for (std::size_t i = 0; i < b1_buttons.size(); ++i) {
        if ((b1 & (1U << i)) != 0) {
            pads[port].buttons =
                static_cast<u16>(pads[port].buttons | static_cast<u16>(b1_buttons[i]));
            pads[port].last_button = b1_buttons[i];
        }
    }

    for (std::size_t j = 0; j < b2_buttons.size(); ++j) {
        if ((b2 & (1U << j)) != 0) {
            pads[port].buttons =
                static_cast<u16>(pads[port].buttons | static_cast<u16>(b2_buttons[j]));
            pads[port].last_button = b2_buttons[j];
        }
    }
}

void Adapter::UpdateStateAxes(std::size_t port, const AdapterPayload& adapter_payload) {
    if (port >= pads.size()) {
        return;
    }

    const std::size_t offset = 1 + (9 * port);
    static constexpr std::array<PadAxes, 6> axes{
        PadAxes::StickX,    PadAxes::StickY,      PadAxes::SubstickX,
        PadAxes::SubstickY, PadAxes::TriggerLeft, PadAxes::TriggerRight,
    };

    for (const PadAxes axis : axes) {
        const auto index = static_cast<std::size_t>(axis);
        const u8 axis_value = adapter_payload[offset + 3 + index];
        if (pads[port].reset_origin_counter <= 18) {
            if (pads[port].axis_origin[index] != axis_value) {
                pads[port].reset_origin_counter = 0;
            }
            pads[port].axis_origin[index] = axis_value;
            pads[port].reset_origin_counter++;
        }
        pads[port].axis_values[index] =
            static_cast<s16>(axis_value - pads[port].axis_origin[index]);
    }
}

void Adapter::UpdateYuzuSettings(std::size_t port) {
    if (port >= pads.size()) {
        return;
    }

    constexpr u8 axis_threshold = 50;
    GCPadStatus pad_status = {.port = port};

    if (pads[port].buttons != 0) {
        pad_status.button = pads[port].last_button;
        pad_queue.Push(pad_status);
    }

    // Accounting for a threshold here to ensure an intentional press
    for (std::size_t i = 0; i < pads[port].axis_values.size(); ++i) {
        const s16 value = pads[port].axis_values[i];

        if (value > axis_threshold || value < -axis_threshold) {
            pad_status.axis = static_cast<PadAxes>(i);
            pad_status.axis_value = value;
            pad_status.axis_threshold = axis_threshold;
            pad_queue.Push(pad_status);
        }
    }
}

void Adapter::UpdateVibrations() {
    // Use 8 states to keep the switching between on/off fast enough for
    // a human to not notice the difference between switching from on/off
    // More states = more rumble strengths = slower update time
    constexpr u8 vibration_states = 8;

    vibration_counter = (vibration_counter + 1) % vibration_states;

    for (GCController& pad : pads) {
        const bool vibrate = pad.rumble_amplitude > vibration_counter;
        vibration_changed |= vibrate != pad.enable_vibration;
        pad.enable_vibration = vibrate;
    }
    SendVibrations();
}

void Adapter::SendVibrations() {
    if (!rumble_enabled || !vibration_changed) {
        return;
    }
    s32 size{};
    constexpr u8 rumble_command = 0x11;
    const u8 p1 = pads[0].enable_vibration;
    const u8 p2 = pads[1].enable_vibration;
    const u8 p3 = pads[2].enable_vibration;
    const u8 p4 = pads[3].enable_vibration;
    std::array<u8, 5> payload = {rumble_command, p1, p2, p3, p4};
    const int err = libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, payload.data(),
                                              static_cast<s32>(payload.size()), &size, 16);
    if (err) {
        LOG_DEBUG(Input, "Adapter libusb write failed: {}", libusb_error_name(err));
        if (output_error_counter++ > 5) {
            LOG_ERROR(Input, "GC adapter output timeout, Rumble disabled");
            rumble_enabled = false;
        }
        return;
    }
    output_error_counter = 0;
    vibration_changed = false;
}

bool Adapter::RumblePlay(std::size_t port, u8 amplitude) {
    pads[port].rumble_amplitude = amplitude;

    return rumble_enabled;
}

void Adapter::AdapterScanThread() {
    adapter_scan_thread_running = true;
    adapter_input_thread_running = false;
    if (adapter_input_thread.joinable()) {
        adapter_input_thread.join();
    }
    ClearLibusbHandle();
    ResetDevices();
    while (adapter_scan_thread_running && !adapter_input_thread_running) {
        Setup();
        std::this_thread::sleep_for(std::chrono::seconds(1));
    }
}

void Adapter::Setup() {
    usb_adapter_handle = libusb_open_device_with_vid_pid(libusb_ctx, 0x057e, 0x0337);

    if (usb_adapter_handle == NULL) {
        return;
    }
    if (!CheckDeviceAccess()) {
        ClearLibusbHandle();
        return;
    }

    libusb_device* device = libusb_get_device(usb_adapter_handle);

    LOG_INFO(Input, "GC adapter is now connected");
    // GC Adapter found and accessible, registering it
    if (GetGCEndpoint(device)) {
        adapter_scan_thread_running = false;
        adapter_input_thread_running = true;
        rumble_enabled = true;
        input_error_counter = 0;
        output_error_counter = 0;
        adapter_input_thread = std::thread(&Adapter::AdapterInputThread, this);
    }
}

bool Adapter::CheckDeviceAccess() {
    // This fixes payload problems from offbrand GCAdapters
    const s32 control_transfer_error =
        libusb_control_transfer(usb_adapter_handle, 0x21, 11, 0x0001, 0, nullptr, 0, 1000);
    if (control_transfer_error < 0) {
        LOG_ERROR(Input, "libusb_control_transfer failed with error= {}", control_transfer_error);
    }

    s32 kernel_driver_error = libusb_kernel_driver_active(usb_adapter_handle, 0);
    if (kernel_driver_error == 1) {
        kernel_driver_error = libusb_detach_kernel_driver(usb_adapter_handle, 0);
        if (kernel_driver_error != 0 && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
            LOG_ERROR(Input, "libusb_detach_kernel_driver failed with error = {}",
                      kernel_driver_error);
        }
    }

    if (kernel_driver_error && kernel_driver_error != LIBUSB_ERROR_NOT_SUPPORTED) {
        libusb_close(usb_adapter_handle);
        usb_adapter_handle = nullptr;
        return false;
    }

    const int interface_claim_error = libusb_claim_interface(usb_adapter_handle, 0);
    if (interface_claim_error) {
        LOG_ERROR(Input, "libusb_claim_interface failed with error = {}", interface_claim_error);
        libusb_close(usb_adapter_handle);
        usb_adapter_handle = nullptr;
        return false;
    }

    return true;
}

bool Adapter::GetGCEndpoint(libusb_device* device) {
    libusb_config_descriptor* config = nullptr;
    const int config_descriptor_return = libusb_get_config_descriptor(device, 0, &config);
    if (config_descriptor_return != LIBUSB_SUCCESS) {
        LOG_ERROR(Input, "libusb_get_config_descriptor failed with error = {}",
                  config_descriptor_return);
        return false;
    }

    for (u8 ic = 0; ic < config->bNumInterfaces; ic++) {
        const libusb_interface* interfaceContainer = &config->interface[ic];
        for (int i = 0; i < interfaceContainer->num_altsetting; i++) {
            const libusb_interface_descriptor* interface = &interfaceContainer->altsetting[i];
            for (u8 e = 0; e < interface->bNumEndpoints; e++) {
                const libusb_endpoint_descriptor* endpoint = &interface->endpoint[e];
                if ((endpoint->bEndpointAddress & LIBUSB_ENDPOINT_IN) != 0) {
                    input_endpoint = endpoint->bEndpointAddress;
                } else {
                    output_endpoint = endpoint->bEndpointAddress;
                }
            }
        }
    }
    // This transfer seems to be responsible for clearing the state of the adapter
    // Used to clear the "busy" state of when the device is unexpectedly unplugged
    unsigned char clear_payload = 0x13;
    libusb_interrupt_transfer(usb_adapter_handle, output_endpoint, &clear_payload,
                              sizeof(clear_payload), nullptr, 16);
    return true;
}

void Adapter::JoinThreads() {
    restart_scan_thread = false;
    adapter_input_thread_running = false;
    adapter_scan_thread_running = false;

    if (adapter_scan_thread.joinable()) {
        adapter_scan_thread.join();
    }

    if (adapter_input_thread.joinable()) {
        adapter_input_thread.join();
    }
}

void Adapter::ClearLibusbHandle() {
    if (usb_adapter_handle) {
        libusb_release_interface(usb_adapter_handle, 1);
        libusb_close(usb_adapter_handle);
        usb_adapter_handle = nullptr;
    }
}

void Adapter::ResetDevices() {
    for (std::size_t i = 0; i < pads.size(); ++i) {
        ResetDevice(i);
    }
}

void Adapter::ResetDevice(std::size_t port) {
    pads[port].type = ControllerTypes::None;
    pads[port].enable_vibration = false;
    pads[port].rumble_amplitude = 0;
    pads[port].buttons = 0;
    pads[port].last_button = PadButton::Undefined;
    pads[port].axis_values.fill(0);
    pads[port].reset_origin_counter = 0;
}

void Adapter::Reset() {
    JoinThreads();
    ClearLibusbHandle();
    ResetDevices();

    if (libusb_ctx) {
        libusb_exit(libusb_ctx);
    }
}

std::vector<Common::ParamPackage> Adapter::GetInputDevices() const {
    std::vector<Common::ParamPackage> devices;
    for (std::size_t port = 0; port < pads.size(); ++port) {
        if (!DeviceConnected(port)) {
            continue;
        }
        std::string name = fmt::format("Gamecube Controller {}", port + 1);
        devices.emplace_back(Common::ParamPackage{
            {"class", "gcpad"},
            {"display", std::move(name)},
            {"port", std::to_string(port)},
        });
    }
    return devices;
}

InputCommon::ButtonMapping Adapter::GetButtonMappingForDevice(
    const Common::ParamPackage& params) const {
    // This list is missing ZL/ZR since those are not considered buttons.
    // We will add those afterwards
    // This list also excludes any button that can't be really mapped
    static constexpr std::array<std::pair<Settings::NativeButton::Values, PadButton>, 12>
        switch_to_gcadapter_button = {
            std::pair{Settings::NativeButton::A, PadButton::ButtonA},
            {Settings::NativeButton::B, PadButton::ButtonB},
            {Settings::NativeButton::X, PadButton::ButtonX},
            {Settings::NativeButton::Y, PadButton::ButtonY},
            {Settings::NativeButton::Plus, PadButton::ButtonStart},
            {Settings::NativeButton::DLeft, PadButton::ButtonLeft},
            {Settings::NativeButton::DUp, PadButton::ButtonUp},
            {Settings::NativeButton::DRight, PadButton::ButtonRight},
            {Settings::NativeButton::DDown, PadButton::ButtonDown},
            {Settings::NativeButton::SL, PadButton::TriggerL},
            {Settings::NativeButton::SR, PadButton::TriggerR},
            {Settings::NativeButton::R, PadButton::TriggerZ},
        };
    if (!params.Has("port")) {
        return {};
    }

    InputCommon::ButtonMapping mapping{};
    for (const auto& [switch_button, gcadapter_button] : switch_to_gcadapter_button) {
        Common::ParamPackage button_params({{"engine", "gcpad"}});
        button_params.Set("port", params.Get("port", 0));
        button_params.Set("button", static_cast<int>(gcadapter_button));
        mapping.insert_or_assign(switch_button, std::move(button_params));
    }

    // Add the missing bindings for ZL/ZR
    static constexpr std::array<std::pair<Settings::NativeButton::Values, PadAxes>, 2>
        switch_to_gcadapter_axis = {
            std::pair{Settings::NativeButton::ZL, PadAxes::TriggerLeft},
            {Settings::NativeButton::ZR, PadAxes::TriggerRight},
        };
    for (const auto& [switch_button, gcadapter_axis] : switch_to_gcadapter_axis) {
        Common::ParamPackage button_params({{"engine", "gcpad"}});
        button_params.Set("port", params.Get("port", 0));
        button_params.Set("button", static_cast<s32>(PadButton::Stick));
        button_params.Set("axis", static_cast<s32>(gcadapter_axis));
        button_params.Set("threshold", 0.5f);
        button_params.Set("direction", "+");
        mapping.insert_or_assign(switch_button, std::move(button_params));
    }
    return mapping;
}

InputCommon::AnalogMapping Adapter::GetAnalogMappingForDevice(
    const Common::ParamPackage& params) const {
    if (!params.Has("port")) {
        return {};
    }

    InputCommon::AnalogMapping mapping = {};
    Common::ParamPackage left_analog_params;
    left_analog_params.Set("engine", "gcpad");
    left_analog_params.Set("port", params.Get("port", 0));
    left_analog_params.Set("axis_x", static_cast<int>(PadAxes::StickX));
    left_analog_params.Set("axis_y", static_cast<int>(PadAxes::StickY));
    mapping.insert_or_assign(Settings::NativeAnalog::LStick, std::move(left_analog_params));
    Common::ParamPackage right_analog_params;
    right_analog_params.Set("engine", "gcpad");
    right_analog_params.Set("port", params.Get("port", 0));
    right_analog_params.Set("axis_x", static_cast<int>(PadAxes::SubstickX));
    right_analog_params.Set("axis_y", static_cast<int>(PadAxes::SubstickY));
    mapping.insert_or_assign(Settings::NativeAnalog::RStick, std::move(right_analog_params));
    return mapping;
}

bool Adapter::DeviceConnected(std::size_t port) const {
    return pads[port].type != ControllerTypes::None;
}

void Adapter::BeginConfiguration() {
    pad_queue.Clear();
    configuring = true;
}

void Adapter::EndConfiguration() {
    pad_queue.Clear();
    configuring = false;
}

Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() {
    return pad_queue;
}

const Common::SPSCQueue<GCPadStatus>& Adapter::GetPadQueue() const {
    return pad_queue;
}

GCController& Adapter::GetPadState(std::size_t port) {
    return pads.at(port);
}

const GCController& Adapter::GetPadState(std::size_t port) const {
    return pads.at(port);
}

} // namespace GCAdapter