1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
|
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <utility>
#include "shader_recompiler/backend/glasm/emit_glasm_instructions.h"
#include "shader_recompiler/backend/glasm/glasm_emit_context.h"
#include "shader_recompiler/frontend/ir/modifiers.h"
#include "shader_recompiler/frontend/ir/value.h"
namespace Shader::Backend::GLASM {
namespace {
struct ScopedRegister {
ScopedRegister() = default;
ScopedRegister(RegAlloc& reg_alloc_) : reg_alloc{®_alloc_}, reg{reg_alloc->AllocReg()} {}
~ScopedRegister() {
if (reg_alloc) {
reg_alloc->FreeReg(reg);
}
}
ScopedRegister& operator=(ScopedRegister&& rhs) noexcept {
if (reg_alloc) {
reg_alloc->FreeReg(reg);
}
reg_alloc = std::exchange(rhs.reg_alloc, nullptr);
reg = rhs.reg;
return *this;
}
ScopedRegister(ScopedRegister&& rhs) noexcept
: reg_alloc{std::exchange(rhs.reg_alloc, nullptr)}, reg{rhs.reg} {}
ScopedRegister& operator=(const ScopedRegister&) = delete;
ScopedRegister(const ScopedRegister&) = delete;
RegAlloc* reg_alloc{};
Register reg;
};
std::string Texture(EmitContext& ctx, IR::TextureInstInfo info,
[[maybe_unused]] const IR::Value& index) {
// FIXME: indexed reads
if (info.type == TextureType::Buffer) {
return fmt::format("texture[{}]", ctx.texture_buffer_bindings.at(info.descriptor_index));
} else {
return fmt::format("texture[{}]", ctx.texture_bindings.at(info.descriptor_index));
}
}
std::string Image(EmitContext& ctx, IR::TextureInstInfo info,
[[maybe_unused]] const IR::Value& index) {
// FIXME: indexed reads
if (info.type == TextureType::Buffer) {
return fmt::format("image[{}]", ctx.image_buffer_bindings.at(info.descriptor_index));
} else {
return fmt::format("image[{}]", ctx.image_bindings.at(info.descriptor_index));
}
}
bool IsTextureMsaa(EmitContext& ctx, const IR::TextureInstInfo& info) {
if (info.type == TextureType::Buffer) {
return false;
}
return ctx.info.texture_descriptors.at(info.descriptor_index).is_multisample;
}
std::string_view TextureType(IR::TextureInstInfo info, bool is_ms = false) {
if (info.is_depth) {
switch (info.type) {
case TextureType::Color1D:
return "SHADOW1D";
case TextureType::ColorArray1D:
return "SHADOWARRAY1D";
case TextureType::Color2D:
case TextureType::Color2DRect:
return "SHADOW2D";
case TextureType::ColorArray2D:
return "SHADOWARRAY2D";
case TextureType::Color3D:
return "SHADOW3D";
case TextureType::ColorCube:
return "SHADOWCUBE";
case TextureType::ColorArrayCube:
return "SHADOWARRAYCUBE";
case TextureType::Buffer:
return "SHADOWBUFFER";
}
} else {
switch (info.type) {
case TextureType::Color1D:
return "1D";
case TextureType::ColorArray1D:
return "ARRAY1D";
case TextureType::Color2D:
case TextureType::Color2DRect:
return is_ms ? "2DMS" : "2D";
case TextureType::ColorArray2D:
return is_ms ? "ARRAY2DMS" : "ARRAY2D";
case TextureType::Color3D:
return "3D";
case TextureType::ColorCube:
return "CUBE";
case TextureType::ColorArrayCube:
return "ARRAYCUBE";
case TextureType::Buffer:
return "BUFFER";
}
}
throw InvalidArgument("Invalid texture type {}", info.type.Value());
}
std::string Offset(EmitContext& ctx, const IR::Value& offset) {
if (offset.IsEmpty()) {
return "";
}
return fmt::format(",offset({})", Register{ctx.reg_alloc.Consume(offset)});
}
std::pair<ScopedRegister, ScopedRegister> AllocOffsetsRegs(EmitContext& ctx,
const IR::Value& offset2) {
if (offset2.IsEmpty()) {
return {};
} else {
return {ctx.reg_alloc, ctx.reg_alloc};
}
}
void SwizzleOffsets(EmitContext& ctx, Register off_x, Register off_y, const IR::Value& offset1,
const IR::Value& offset2) {
const Register offsets_a{ctx.reg_alloc.Consume(offset1)};
const Register offsets_b{ctx.reg_alloc.Consume(offset2)};
// Input swizzle: [XYXY] [XYXY]
// Output swizzle: [XXXX] [YYYY]
ctx.Add("MOV {}.x,{}.x;"
"MOV {}.y,{}.z;"
"MOV {}.z,{}.x;"
"MOV {}.w,{}.z;"
"MOV {}.x,{}.y;"
"MOV {}.y,{}.w;"
"MOV {}.z,{}.y;"
"MOV {}.w,{}.w;",
off_x, offsets_a, off_x, offsets_a, off_x, offsets_b, off_x, offsets_b, off_y,
offsets_a, off_y, offsets_a, off_y, offsets_b, off_y, offsets_b);
}
std::string GradOffset(const IR::Value& offset) {
if (offset.IsImmediate()) {
LOG_WARNING(Shader_GLASM, "Gradient offset is a scalar immediate");
return "";
}
IR::Inst* const vector{offset.InstRecursive()};
if (!vector->AreAllArgsImmediates()) {
LOG_WARNING(Shader_GLASM, "Gradient offset vector is not immediate");
return "";
}
switch (vector->NumArgs()) {
case 1:
return fmt::format(",({})", static_cast<s32>(vector->Arg(0).U32()));
case 2:
return fmt::format(",({},{})", static_cast<s32>(vector->Arg(0).U32()),
static_cast<s32>(vector->Arg(1).U32()));
default:
throw LogicError("Invalid number of gradient offsets {}", vector->NumArgs());
}
}
std::pair<std::string, ScopedRegister> Coord(EmitContext& ctx, const IR::Value& coord) {
if (coord.IsImmediate()) {
ScopedRegister scoped_reg(ctx.reg_alloc);
ctx.Add("MOV.U {}.x,{};", scoped_reg.reg, ScalarU32{ctx.reg_alloc.Consume(coord)});
return {fmt::to_string(scoped_reg.reg), std::move(scoped_reg)};
}
std::string coord_vec{fmt::to_string(Register{ctx.reg_alloc.Consume(coord)})};
if (coord.InstRecursive()->HasUses()) {
// Move non-dead coords to a separate register, although this should never happen because
// vectors are only assembled for immediate texture instructions
ctx.Add("MOV.F RC,{};", coord_vec);
coord_vec = "RC";
}
return {std::move(coord_vec), ScopedRegister{}};
}
void StoreSparse(EmitContext& ctx, IR::Inst* sparse_inst) {
if (!sparse_inst) {
return;
}
const Register sparse_ret{ctx.reg_alloc.Define(*sparse_inst)};
ctx.Add("MOV.S {},-1;"
"MOV.S {}(NONRESIDENT),0;",
sparse_ret, sparse_ret);
}
std::string_view FormatStorage(ImageFormat format) {
switch (format) {
case ImageFormat::Typeless:
return "U";
case ImageFormat::R8_UINT:
return "U8";
case ImageFormat::R8_SINT:
return "S8";
case ImageFormat::R16_UINT:
return "U16";
case ImageFormat::R16_SINT:
return "S16";
case ImageFormat::R32_UINT:
return "U32";
case ImageFormat::R32G32_UINT:
return "U32X2";
case ImageFormat::R32G32B32A32_UINT:
return "U32X4";
}
throw InvalidArgument("Invalid image format {}", format);
}
template <typename T>
void ImageAtomic(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord, T value,
std::string_view op) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string_view type{TextureType(info)};
const std::string image{Image(ctx, info, index)};
const Register ret{ctx.reg_alloc.Define(inst)};
ctx.Add("ATOMIM.{} {},{},{},{},{};", op, ret, value, coord, image, type);
}
IR::Inst* PrepareSparse(IR::Inst& inst) {
const auto sparse_inst{inst.GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
if (sparse_inst) {
sparse_inst->Invalidate();
}
return sparse_inst;
}
} // Anonymous namespace
void EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, Register bias_lc, const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view lod_clamp_mod{info.has_lod_clamp ? ".LODCLAMP" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.has_bias) {
if (info.type == TextureType::ColorArrayCube) {
ctx.Add("TXB.F{}{} {},{},{},{},ARRAYCUBE{};", lod_clamp_mod, sparse_mod, ret, coord_vec,
bias_lc, texture, offset_vec);
} else {
if (info.has_lod_clamp) {
ctx.Add("MOV.F {}.w,{}.x;"
"TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};",
coord_vec, bias_lc, sparse_mod, ret, coord_vec, bias_lc, texture, type,
offset_vec);
} else {
ctx.Add("MOV.F {}.w,{}.x;"
"TXB.F{} {},{},{},{}{};",
coord_vec, bias_lc, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
}
} else {
if (info.has_lod_clamp && info.type == TextureType::ColorArrayCube) {
ctx.Add("TEX.F.LODCLAMP{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec,
bias_lc, texture, offset_vec);
} else {
ctx.Add("TEX.F{}{} {},{},{},{}{};", lod_clamp_mod, sparse_mod, ret, coord_vec, texture,
type, offset_vec);
}
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, ScalarF32 lod, const IR::Value& offset) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.type == TextureType::ColorArrayCube) {
ctx.Add("TXL.F{} {},{},{},{},ARRAYCUBE{};", sparse_mod, ret, coord_vec, lod, texture,
offset_vec);
} else {
ctx.Add("MOV.F {}.w,{};"
"TXL.F{} {},{},{},{}{};",
coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& dref,
const IR::Value& bias_lc, const IR::Value& offset) {
// Allocate early to avoid aliases
const auto info{inst.Flags<IR::TextureInstInfo>()};
ScopedRegister staging;
if (info.type == TextureType::ColorArrayCube) {
staging = ScopedRegister{ctx.reg_alloc};
}
const ScalarF32 dref_val{ctx.reg_alloc.Consume(dref)};
const Register bias_lc_vec{ctx.reg_alloc.Consume(bias_lc)};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.has_bias) {
if (info.has_lod_clamp) {
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{}.x;"
"TXB.F.LODCLAMP{} {},{},{}.y,{},{}{};",
coord_vec, dref_val, coord_vec, bias_lc_vec, sparse_mod, ret, coord_vec,
bias_lc_vec, texture, type, offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXB.F.LODCLAMP{} {},{},{},{},{}{};",
coord_vec, dref_val, sparse_mod, ret, coord_vec, bias_lc_vec, texture, type,
offset_vec);
break;
default:
throw NotImplementedException("Invalid type {} with bias and lod clamp",
info.type.Value());
}
} else {
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{}.x;"
"TXB.F{} {},{},{},{}{};",
coord_vec, dref_val, coord_vec, bias_lc_vec, sparse_mod, ret, coord_vec,
texture, type, offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXB.F{} {},{},{},{},{}{};",
coord_vec, dref_val, sparse_mod, ret, coord_vec, bias_lc_vec, texture, type,
offset_vec);
break;
case TextureType::ColorArrayCube:
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{}.x;"
"TXB.F{} {},{},{},{},{}{};",
staging.reg, dref_val, staging.reg, bias_lc_vec, sparse_mod, ret, coord_vec,
staging.reg, texture, type, offset_vec);
break;
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
}
} else {
if (info.has_lod_clamp) {
if (info.type != TextureType::ColorArrayCube) {
const bool w_swizzle{info.type == TextureType::ColorArray2D ||
info.type == TextureType::ColorCube};
const char dref_swizzle{w_swizzle ? 'w' : 'z'};
ctx.Add("MOV.F {}.{},{};"
"TEX.F.LODCLAMP{} {},{},{},{},{}{};",
coord_vec, dref_swizzle, dref_val, sparse_mod, ret, coord_vec, bias_lc_vec,
texture, type, offset_vec);
} else {
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{};"
"TEX.F.LODCLAMP{} {},{},{},{},{}{};",
staging.reg, dref_val, staging.reg, bias_lc_vec, sparse_mod, ret, coord_vec,
staging.reg, texture, type, offset_vec);
}
} else {
if (info.type != TextureType::ColorArrayCube) {
const bool w_swizzle{info.type == TextureType::ColorArray2D ||
info.type == TextureType::ColorCube};
const char dref_swizzle{w_swizzle ? 'w' : 'z'};
ctx.Add("MOV.F {}.{},{};"
"TEX.F{} {},{},{},{}{};",
coord_vec, dref_swizzle, dref_val, sparse_mod, ret, coord_vec, texture,
type, offset_vec);
} else {
ctx.Add("TEX.F{} {},{},{},{},{}{};", sparse_mod, ret, coord_vec, dref_val, texture,
type, offset_vec);
}
}
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& dref,
const IR::Value& lod, const IR::Value& offset) {
// Allocate early to avoid aliases
const auto info{inst.Flags<IR::TextureInstInfo>()};
ScopedRegister staging;
if (info.type == TextureType::ColorArrayCube) {
staging = ScopedRegister{ctx.reg_alloc};
}
const ScalarF32 dref_val{ctx.reg_alloc.Consume(dref)};
const ScalarF32 lod_val{ctx.reg_alloc.Consume(lod)};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
switch (info.type) {
case TextureType::Color1D:
case TextureType::ColorArray1D:
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};"
"MOV.F {}.w,{};"
"TXL.F{} {},{},{},{}{};",
coord_vec, dref_val, coord_vec, lod_val, sparse_mod, ret, coord_vec, texture, type,
offset_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};"
"TXL.F{} {},{},{},{},{}{};",
coord_vec, dref_val, sparse_mod, ret, coord_vec, lod_val, texture, type,
offset_vec);
break;
case TextureType::ColorArrayCube:
ctx.Add("MOV.F {}.x,{};"
"MOV.F {}.y,{};"
"TXL.F{} {},{},{},{},{}{};",
staging.reg, dref_val, staging.reg, lod_val, sparse_mod, ret, coord_vec,
staging.reg, texture, type, offset_vec);
break;
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageGather(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2) {
// Allocate offsets early so they don't overwrite any consumed register
const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)};
const auto info{inst.Flags<IR::TextureInstInfo>()};
const char comp{"xyzw"[info.gather_component]};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const Register coord_vec{ctx.reg_alloc.Consume(coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (offset2.IsEmpty()) {
const std::string offset_vec{Offset(ctx, offset)};
ctx.Add("TXG.F{} {},{},{}.{},{}{};", sparse_mod, ret, coord_vec, texture, comp, type,
offset_vec);
} else {
SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2);
ctx.Add("TXGO.F{} {},{},{},{},{}.{},{};", sparse_mod, ret, coord_vec, off_x.reg, off_y.reg,
texture, comp, type);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageGatherDref(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, const IR::Value& offset2,
const IR::Value& dref) {
// FIXME: This instruction is not working as expected
// Allocate offsets early so they don't overwrite any consumed register
const auto [off_x, off_y]{AllocOffsetsRegs(ctx, offset2)};
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const Register coord_vec{ctx.reg_alloc.Consume(coord)};
const ScalarF32 dref_value{ctx.reg_alloc.Consume(dref)};
const Register ret{ctx.reg_alloc.Define(inst)};
std::string args;
switch (info.type) {
case TextureType::Color2D:
ctx.Add("MOV.F {}.z,{};", coord_vec, dref_value);
args = fmt::to_string(coord_vec);
break;
case TextureType::ColorArray2D:
case TextureType::ColorCube:
ctx.Add("MOV.F {}.w,{};", coord_vec, dref_value);
args = fmt::to_string(coord_vec);
break;
case TextureType::ColorArrayCube:
args = fmt::format("{},{}", coord_vec, dref_value);
break;
default:
throw NotImplementedException("Invalid type {}", info.type.Value());
}
if (offset2.IsEmpty()) {
const std::string offset_vec{Offset(ctx, offset)};
ctx.Add("TXG.F{} {},{},{},{}{};", sparse_mod, ret, args, texture, type, offset_vec);
} else {
SwizzleOffsets(ctx, off_x.reg, off_y.reg, offset, offset2);
ctx.Add("TXGO.F{} {},{},{},{},{},{};", sparse_mod, ret, args, off_x.reg, off_y.reg, texture,
type);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageFetch(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& offset, ScalarS32 lod, ScalarS32 ms) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{PrepareSparse(inst)};
const bool is_multisample{ms.type != Type::Void};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info, is_multisample)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{Offset(ctx, offset)};
const auto [coord_vec, coord_alloc]{Coord(ctx, coord)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (info.type == TextureType::Buffer) {
ctx.Add("TXF.F{} {},{},{},{}{};", sparse_mod, ret, coord_vec, texture, type, offset_vec);
} else if (is_multisample) {
ctx.Add("MOV.S {}.w,{};"
"TXFMS.F{} {},{},{},{}{};",
coord_vec, ms, sparse_mod, ret, coord_vec, texture, type, offset_vec);
} else {
ctx.Add("MOV.S {}.w,{};"
"TXF.F{} {},{},{},{}{};",
coord_vec, lod, sparse_mod, ret, coord_vec, texture, type, offset_vec);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageQueryDimensions(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
ScalarS32 lod, [[maybe_unused]] const IR::Value& skip_mips) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string texture{Texture(ctx, info, index)};
const bool is_msaa{IsTextureMsaa(ctx, info)};
const std::string_view type{TextureType(info, is_msaa)};
ctx.Add("TXQ {},{},{},{};", inst, lod, texture, type);
}
void EmitImageQueryLod(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string texture{Texture(ctx, info, index)};
const std::string_view type{TextureType(info)};
ctx.Add("LOD.F {},{},{},{};", inst, coord, texture, type);
}
void EmitImageGradient(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
const IR::Value& coord, const IR::Value& derivatives,
const IR::Value& offset, const IR::Value& lod_clamp) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
ScopedRegister dpdx, dpdy;
const bool multi_component{info.num_derivates > 1 || info.has_lod_clamp};
if (multi_component) {
// Allocate this early to avoid aliasing other registers
dpdx = ScopedRegister{ctx.reg_alloc};
dpdy = ScopedRegister{ctx.reg_alloc};
}
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string texture{Texture(ctx, info, index)};
const std::string offset_vec{GradOffset(offset)};
const Register coord_vec{ctx.reg_alloc.Consume(coord)};
const Register derivatives_vec{ctx.reg_alloc.Consume(derivatives)};
const Register ret{ctx.reg_alloc.Define(inst)};
if (multi_component) {
ctx.Add("MOV.F {}.x,{}.x;"
"MOV.F {}.y,{}.z;"
"MOV.F {}.x,{}.y;"
"MOV.F {}.y,{}.w;",
dpdx.reg, derivatives_vec, dpdx.reg, derivatives_vec, dpdy.reg, derivatives_vec,
dpdy.reg, derivatives_vec);
if (info.has_lod_clamp) {
const ScalarF32 lod_clamp_value{ctx.reg_alloc.Consume(lod_clamp)};
ctx.Add("MOV.F {}.w,{};"
"TXD.F.LODCLAMP{} {},{},{},{},{},{}{};",
dpdy.reg, lod_clamp_value, sparse_mod, ret, coord_vec, dpdx.reg, dpdy.reg,
texture, type, offset_vec);
} else {
ctx.Add("TXD.F{} {},{},{},{},{},{}{};", sparse_mod, ret, coord_vec, dpdx.reg, dpdy.reg,
texture, type, offset_vec);
}
} else {
ctx.Add("TXD.F{} {},{},{}.x,{}.y,{},{}{};", sparse_mod, ret, coord_vec, derivatives_vec,
derivatives_vec, texture, type, offset_vec);
}
StoreSparse(ctx, sparse_inst);
}
void EmitImageRead(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const auto sparse_inst{PrepareSparse(inst)};
const std::string_view format{FormatStorage(info.image_format)};
const std::string_view sparse_mod{sparse_inst ? ".SPARSE" : ""};
const std::string_view type{TextureType(info)};
const std::string image{Image(ctx, info, index)};
const Register ret{ctx.reg_alloc.Define(inst)};
ctx.Add("LOADIM.{}{} {},{},{},{};", format, sparse_mod, ret, coord, image, type);
StoreSparse(ctx, sparse_inst);
}
void EmitImageWrite(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
Register color) {
const auto info{inst.Flags<IR::TextureInstInfo>()};
const std::string_view format{FormatStorage(info.image_format)};
const std::string_view type{TextureType(info)};
const std::string image{Image(ctx, info, index)};
ctx.Add("STOREIM.{} {},{},{},{};", format, image, color, coord, type);
}
void EmitIsTextureScaled(EmitContext& ctx, IR::Inst& inst, const IR::Value& index) {
if (!index.IsImmediate()) {
throw NotImplementedException("Non-constant texture rescaling");
}
ctx.Add("AND.U RC.x,scaling[0].x,{};"
"SNE.S {},RC.x,0;",
1u << index.U32(), ctx.reg_alloc.Define(inst));
}
void EmitIsImageScaled(EmitContext& ctx, IR::Inst& inst, const IR::Value& index) {
if (!index.IsImmediate()) {
throw NotImplementedException("Non-constant texture rescaling");
}
ctx.Add("AND.U RC.x,scaling[0].y,{};"
"SNE.S {},RC.x,0;",
1u << index.U32(), ctx.reg_alloc.Define(inst));
}
void EmitImageAtomicIAdd32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "ADD.U32");
}
void EmitImageAtomicSMin32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarS32 value) {
ImageAtomic(ctx, inst, index, coord, value, "MIN.S32");
}
void EmitImageAtomicUMin32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "MIN.U32");
}
void EmitImageAtomicSMax32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarS32 value) {
ImageAtomic(ctx, inst, index, coord, value, "MAX.S32");
}
void EmitImageAtomicUMax32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "MAX.U32");
}
void EmitImageAtomicInc32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "IWRAP.U32");
}
void EmitImageAtomicDec32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "DWRAP.U32");
}
void EmitImageAtomicAnd32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "AND.U32");
}
void EmitImageAtomicOr32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "OR.U32");
}
void EmitImageAtomicXor32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index, Register coord,
ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "XOR.U32");
}
void EmitImageAtomicExchange32(EmitContext& ctx, IR::Inst& inst, const IR::Value& index,
Register coord, ScalarU32 value) {
ImageAtomic(ctx, inst, index, coord, value, "EXCH.U32");
}
void EmitBindlessImageSampleImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleDrefImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageSampleDrefExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGather(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGatherDref(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageFetch(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageQueryDimensions(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageQueryLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageGradient(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageRead(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageWrite(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleDrefImplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageSampleDrefExplicitLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGather(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGatherDref(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageFetch(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageQueryDimensions(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageQueryLod(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageGradient(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageRead(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageWrite(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicIAdd32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicSMin32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicUMin32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicSMax32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicUMax32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicInc32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicDec32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicAnd32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicOr32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicXor32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBindlessImageAtomicExchange32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicIAdd32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicSMin32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicUMin32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicSMax32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicUMax32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicInc32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicDec32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicAnd32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicOr32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicXor32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
void EmitBoundImageAtomicExchange32(EmitContext&) {
throw LogicError("Unreachable instruction");
}
} // namespace Shader::Backend::GLASM
|