summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/backend/spirv/emit_spirv_image.cpp
blob: 64a4e0e5528b4d7e5fe2be515d859871e3465170 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <boost/container/static_vector.hpp>

#include "shader_recompiler/backend/spirv/emit_spirv.h"
#include "shader_recompiler/backend/spirv/emit_spirv_instructions.h"
#include "shader_recompiler/backend/spirv/spirv_emit_context.h"
#include "shader_recompiler/frontend/ir/modifiers.h"

namespace Shader::Backend::SPIRV {
namespace {
class ImageOperands {
public:
    [[maybe_unused]] static constexpr bool ImageSampleOffsetAllowed = false;
    [[maybe_unused]] static constexpr bool ImageGatherOffsetAllowed = true;
    [[maybe_unused]] static constexpr bool ImageFetchOffsetAllowed = false;
    [[maybe_unused]] static constexpr bool ImageGradientOffsetAllowed = false;

    explicit ImageOperands(EmitContext& ctx, bool has_bias, bool has_lod, bool has_lod_clamp,
                           Id lod, const IR::Value& offset) {
        if (has_bias) {
            const Id bias{has_lod_clamp ? ctx.OpCompositeExtract(ctx.F32[1], lod, 0) : lod};
            Add(spv::ImageOperandsMask::Bias, bias);
        }
        if (has_lod) {
            const Id lod_value{has_lod_clamp ? ctx.OpCompositeExtract(ctx.F32[1], lod, 0) : lod};
            Add(spv::ImageOperandsMask::Lod, lod_value);
        }
        AddOffset(ctx, offset, ImageSampleOffsetAllowed);
        if (has_lod_clamp) {
            const Id lod_clamp{has_bias ? ctx.OpCompositeExtract(ctx.F32[1], lod, 1) : lod};
            Add(spv::ImageOperandsMask::MinLod, lod_clamp);
        }
    }

    explicit ImageOperands(EmitContext& ctx, const IR::Value& offset, const IR::Value& offset2) {
        if (offset2.IsEmpty()) {
            if (offset.IsEmpty()) {
                return;
            }
            Add(spv::ImageOperandsMask::Offset, ctx.Def(offset));
            return;
        }
        const std::array values{offset.InstRecursive(), offset2.InstRecursive()};
        if (!values[0]->AreAllArgsImmediates() || !values[1]->AreAllArgsImmediates()) {
            LOG_WARNING(Shader_SPIRV, "Not all arguments in PTP are immediate, ignoring");
            return;
        }
        const IR::Opcode opcode{values[0]->GetOpcode()};
        if (opcode != values[1]->GetOpcode() || opcode != IR::Opcode::CompositeConstructU32x4) {
            throw LogicError("Invalid PTP arguments");
        }
        auto read{[&](unsigned int a, unsigned int b) { return values[a]->Arg(b).U32(); }};

        const Id offsets{ctx.ConstantComposite(
            ctx.TypeArray(ctx.U32[2], ctx.Const(4U)), ctx.Const(read(0, 0), read(0, 1)),
            ctx.Const(read(0, 2), read(0, 3)), ctx.Const(read(1, 0), read(1, 1)),
            ctx.Const(read(1, 2), read(1, 3)))};
        Add(spv::ImageOperandsMask::ConstOffsets, offsets);
    }

    explicit ImageOperands(Id lod, Id ms) {
        if (Sirit::ValidId(lod)) {
            Add(spv::ImageOperandsMask::Lod, lod);
        }
        if (Sirit::ValidId(ms)) {
            Add(spv::ImageOperandsMask::Sample, ms);
        }
    }

    explicit ImageOperands(EmitContext& ctx, bool has_lod_clamp, Id derivatives,
                           u32 num_derivatives, const IR::Value& offset, Id lod_clamp) {
        if (!Sirit::ValidId(derivatives)) {
            throw LogicError("Derivatives must be present");
        }
        boost::container::static_vector<Id, 3> deriv_x_accum;
        boost::container::static_vector<Id, 3> deriv_y_accum;
        for (u32 i = 0; i < num_derivatives; ++i) {
            deriv_x_accum.push_back(ctx.OpCompositeExtract(ctx.F32[1], derivatives, i * 2));
            deriv_y_accum.push_back(ctx.OpCompositeExtract(ctx.F32[1], derivatives, i * 2 + 1));
        }
        const Id derivatives_X{ctx.OpCompositeConstruct(
            ctx.F32[num_derivatives], std::span{deriv_x_accum.data(), deriv_x_accum.size()})};
        const Id derivatives_Y{ctx.OpCompositeConstruct(
            ctx.F32[num_derivatives], std::span{deriv_y_accum.data(), deriv_y_accum.size()})};
        Add(spv::ImageOperandsMask::Grad, derivatives_X, derivatives_Y);
        AddOffset(ctx, offset, ImageGradientOffsetAllowed);
        if (has_lod_clamp) {
            Add(spv::ImageOperandsMask::MinLod, lod_clamp);
        }
    }

    explicit ImageOperands(EmitContext& ctx, bool has_lod_clamp, Id derivatives_1, Id derivatives_2,
                           const IR::Value& offset, Id lod_clamp) {
        if (!Sirit::ValidId(derivatives_1) || !Sirit::ValidId(derivatives_2)) {
            throw LogicError("Derivatives must be present");
        }
        boost::container::static_vector<Id, 3> deriv_1_accum{
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_1, 0),
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_1, 2),
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_2, 0),
        };
        boost::container::static_vector<Id, 3> deriv_2_accum{
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_1, 1),
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_1, 3),
            ctx.OpCompositeExtract(ctx.F32[1], derivatives_2, 1),
        };
        const Id derivatives_id1{ctx.OpCompositeConstruct(
            ctx.F32[3], std::span{deriv_1_accum.data(), deriv_1_accum.size()})};
        const Id derivatives_id2{ctx.OpCompositeConstruct(
            ctx.F32[3], std::span{deriv_2_accum.data(), deriv_2_accum.size()})};
        Add(spv::ImageOperandsMask::Grad, derivatives_id1, derivatives_id2);
        AddOffset(ctx, offset, ImageGradientOffsetAllowed);
        if (has_lod_clamp) {
            Add(spv::ImageOperandsMask::MinLod, lod_clamp);
        }
    }

    std::span<const Id> Span() const noexcept {
        return std::span{operands.data(), operands.size()};
    }

    std::optional<spv::ImageOperandsMask> MaskOptional() const noexcept {
        return mask != spv::ImageOperandsMask{} ? std::make_optional(mask) : std::nullopt;
    }

    spv::ImageOperandsMask Mask() const noexcept {
        return mask;
    }

private:
    void AddOffset(EmitContext& ctx, const IR::Value& offset, bool runtime_offset_allowed) {
        if (offset.IsEmpty()) {
            return;
        }
        if (offset.IsImmediate()) {
            Add(spv::ImageOperandsMask::ConstOffset, ctx.SConst(static_cast<s32>(offset.U32())));
            return;
        }
        IR::Inst* const inst{offset.InstRecursive()};
        if (inst->AreAllArgsImmediates()) {
            switch (inst->GetOpcode()) {
            case IR::Opcode::CompositeConstructU32x2:
                Add(spv::ImageOperandsMask::ConstOffset,
                    ctx.SConst(static_cast<s32>(inst->Arg(0).U32()),
                               static_cast<s32>(inst->Arg(1).U32())));
                return;
            case IR::Opcode::CompositeConstructU32x3:
                Add(spv::ImageOperandsMask::ConstOffset,
                    ctx.SConst(static_cast<s32>(inst->Arg(0).U32()),
                               static_cast<s32>(inst->Arg(1).U32()),
                               static_cast<s32>(inst->Arg(2).U32())));
                return;
            case IR::Opcode::CompositeConstructU32x4:
                Add(spv::ImageOperandsMask::ConstOffset,
                    ctx.SConst(static_cast<s32>(inst->Arg(0).U32()),
                               static_cast<s32>(inst->Arg(1).U32()),
                               static_cast<s32>(inst->Arg(2).U32()),
                               static_cast<s32>(inst->Arg(3).U32())));
                return;
            default:
                break;
            }
        }
        if (runtime_offset_allowed) {
            Add(spv::ImageOperandsMask::Offset, ctx.Def(offset));
        }
    }

    void Add(spv::ImageOperandsMask new_mask, Id value) {
        mask = static_cast<spv::ImageOperandsMask>(static_cast<unsigned>(mask) |
                                                   static_cast<unsigned>(new_mask));
        operands.push_back(value);
    }

    void Add(spv::ImageOperandsMask new_mask, Id value_1, Id value_2) {
        mask = static_cast<spv::ImageOperandsMask>(static_cast<unsigned>(mask) |
                                                   static_cast<unsigned>(new_mask));
        operands.push_back(value_1);
        operands.push_back(value_2);
    }

    boost::container::static_vector<Id, 4> operands;
    spv::ImageOperandsMask mask{};
};

Id Texture(EmitContext& ctx, IR::TextureInstInfo info, [[maybe_unused]] const IR::Value& index) {
    const TextureDefinition& def{ctx.textures.at(info.descriptor_index)};
    if (def.count > 1) {
        const Id pointer{ctx.OpAccessChain(def.pointer_type, def.id, ctx.Def(index))};
        return ctx.OpLoad(def.sampled_type, pointer);
    } else {
        return ctx.OpLoad(def.sampled_type, def.id);
    }
}

Id TextureImage(EmitContext& ctx, IR::TextureInstInfo info, const IR::Value& index) {
    if (!index.IsImmediate() || index.U32() != 0) {
        throw NotImplementedException("Indirect image indexing");
    }
    if (info.type == TextureType::Buffer) {
        const TextureBufferDefinition& def{ctx.texture_buffers.at(info.descriptor_index)};
        if (def.count > 1) {
            throw NotImplementedException("Indirect texture sample");
        }
        return ctx.OpLoad(ctx.image_buffer_type, def.id);
    } else {
        const TextureDefinition& def{ctx.textures.at(info.descriptor_index)};
        if (def.count > 1) {
            throw NotImplementedException("Indirect texture sample");
        }
        return ctx.OpImage(def.image_type, ctx.OpLoad(def.sampled_type, def.id));
    }
}

std::pair<Id, bool> Image(EmitContext& ctx, const IR::Value& index, IR::TextureInstInfo info) {
    if (!index.IsImmediate() || index.U32() != 0) {
        throw NotImplementedException("Indirect image indexing");
    }
    if (info.type == TextureType::Buffer) {
        const ImageBufferDefinition def{ctx.image_buffers.at(info.descriptor_index)};
        return {ctx.OpLoad(def.image_type, def.id), def.is_integer};
    } else {
        const ImageDefinition def{ctx.images.at(info.descriptor_index)};
        return {ctx.OpLoad(def.image_type, def.id), def.is_integer};
    }
}

bool IsTextureMsaa(EmitContext& ctx, const IR::TextureInstInfo& info) {
    if (info.type == TextureType::Buffer) {
        return false;
    }
    return ctx.textures.at(info.descriptor_index).is_multisample;
}

Id Decorate(EmitContext& ctx, IR::Inst* inst, Id sample) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    if (info.relaxed_precision != 0) {
        ctx.Decorate(sample, spv::Decoration::RelaxedPrecision);
    }
    return sample;
}

template <typename MethodPtrType, typename... Args>
Id Emit(MethodPtrType sparse_ptr, MethodPtrType non_sparse_ptr, EmitContext& ctx, IR::Inst* inst,
        Id result_type, Args&&... args) {
    IR::Inst* const sparse{inst->GetAssociatedPseudoOperation(IR::Opcode::GetSparseFromOp)};
    if (!sparse) {
        return Decorate(ctx, inst, (ctx.*non_sparse_ptr)(result_type, std::forward<Args>(args)...));
    }
    const Id struct_type{ctx.TypeStruct(ctx.U32[1], result_type)};
    const Id sample{(ctx.*sparse_ptr)(struct_type, std::forward<Args>(args)...)};
    const Id resident_code{ctx.OpCompositeExtract(ctx.U32[1], sample, 0U)};
    sparse->SetDefinition(ctx.OpImageSparseTexelsResident(ctx.U1, resident_code));
    sparse->Invalidate();
    Decorate(ctx, inst, sample);
    return ctx.OpCompositeExtract(result_type, sample, 1U);
}

Id IsScaled(EmitContext& ctx, const IR::Value& index, Id member_index, u32 base_index) {
    const Id push_constant_u32{ctx.TypePointer(spv::StorageClass::PushConstant, ctx.U32[1])};
    Id bit{};
    if (index.IsImmediate()) {
        // Use BitwiseAnd instead of BitfieldExtract for better codegen on Nvidia OpenGL.
        // LOP32I.NZ is used to set the predicate rather than BFE+ISETP.
        const u32 index_value{index.U32() + base_index};
        const Id word_index{ctx.Const(index_value / 32)};
        const Id bit_index_mask{ctx.Const(1u << (index_value % 32))};
        const Id pointer{ctx.OpAccessChain(push_constant_u32, ctx.rescaling_push_constants,
                                           member_index, word_index)};
        const Id word{ctx.OpLoad(ctx.U32[1], pointer)};
        bit = ctx.OpBitwiseAnd(ctx.U32[1], word, bit_index_mask);
    } else {
        Id index_value{ctx.Def(index)};
        if (base_index != 0) {
            index_value = ctx.OpIAdd(ctx.U32[1], index_value, ctx.Const(base_index));
        }
        const Id bit_index{ctx.OpBitwiseAnd(ctx.U32[1], index_value, ctx.Const(31u))};
        bit = ctx.OpBitFieldUExtract(ctx.U32[1], index_value, bit_index, ctx.Const(1u));
    }
    return ctx.OpINotEqual(ctx.U1, bit, ctx.u32_zero_value);
}

Id BitTest(EmitContext& ctx, Id mask, Id bit) {
    const Id shifted{ctx.OpShiftRightLogical(ctx.U32[1], mask, bit)};
    const Id bit_value{ctx.OpBitwiseAnd(ctx.U32[1], shifted, ctx.Const(1u))};
    return ctx.OpINotEqual(ctx.U1, bit_value, ctx.u32_zero_value);
}

Id ImageGatherSubpixelOffset(EmitContext& ctx, const IR::TextureInstInfo& info, Id texture,
                             Id coords) {
    // Apply a subpixel offset of 1/512 the texel size of the texture to ensure same rounding on
    // AMD hardware as on Maxwell or other Nvidia architectures.
    const auto calculate_coords{[&](size_t dim) {
        const Id nudge{ctx.Const(0x1p-9f)};
        const Id image_size{ctx.OpImageQuerySizeLod(ctx.U32[dim], texture, ctx.u32_zero_value)};
        Id offset{dim == 2 ? ctx.ConstantComposite(ctx.F32[dim], nudge, nudge)
                           : ctx.ConstantComposite(ctx.F32[dim], nudge, nudge, ctx.f32_zero_value)};
        offset = ctx.OpFDiv(ctx.F32[dim], offset, ctx.OpConvertUToF(ctx.F32[dim], image_size));
        return ctx.OpFAdd(ctx.F32[dim], coords, offset);
    }};
    switch (info.type) {
    case TextureType::Color2D:
    case TextureType::Color2DRect:
        return calculate_coords(2);
    case TextureType::ColorArray2D:
    case TextureType::ColorCube:
        return calculate_coords(3);
    default:
        return coords;
    }
}

void AddOffsetToCoordinates(EmitContext& ctx, const IR::TextureInstInfo& info, Id& coords,
                            Id offset) {
    if (!Sirit::ValidId(offset)) {
        return;
    }

    Id result_type{};
    switch (info.type) {
    case TextureType::Buffer:
    case TextureType::Color1D:
    case TextureType::ColorArray1D: {
        result_type = ctx.U32[1];
        break;
    }
    case TextureType::Color2D:
    case TextureType::Color2DRect:
    case TextureType::ColorArray2D: {
        result_type = ctx.U32[2];
        break;
    }
    case TextureType::Color3D: {
        result_type = ctx.U32[3];
        break;
    }
    case TextureType::ColorCube:
    case TextureType::ColorArrayCube:
        return;
    }
    coords = ctx.OpIAdd(result_type, coords, offset);
}
} // Anonymous namespace

Id EmitBindlessImageSampleImplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageSampleExplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageSampleDrefImplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageSampleDrefExplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageGather(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageGatherDref(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageFetch(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageQueryDimensions(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageQueryLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageGradient(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageRead(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBindlessImageWrite(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageSampleImplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageSampleExplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageSampleDrefImplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageSampleDrefExplicitLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageGather(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageGatherDref(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageFetch(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageQueryDimensions(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageQueryLod(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageGradient(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageRead(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitBoundImageWrite(EmitContext&) {
    throw LogicError("Unreachable instruction");
}

Id EmitImageSampleImplicitLod(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords,
                              Id bias_lc, const IR::Value& offset) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    if (ctx.stage == Stage::Fragment) {
        const ImageOperands operands(ctx, info.has_bias != 0, false, info.has_lod_clamp != 0,
                                     bias_lc, offset);
        return Emit(&EmitContext::OpImageSparseSampleImplicitLod,
                    &EmitContext::OpImageSampleImplicitLod, ctx, inst, ctx.F32[4],
                    Texture(ctx, info, index), coords, operands.MaskOptional(), operands.Span());
    } else {
        // We can't use implicit lods on non-fragment stages on SPIR-V. Maxwell hardware behaves as
        // if the lod was explicitly zero.  This may change on Turing with implicit compute
        // derivatives
        const Id lod{ctx.Const(0.0f)};
        const ImageOperands operands(ctx, false, true, info.has_lod_clamp != 0, lod, offset);
        return Emit(&EmitContext::OpImageSparseSampleExplicitLod,
                    &EmitContext::OpImageSampleExplicitLod, ctx, inst, ctx.F32[4],
                    Texture(ctx, info, index), coords, operands.Mask(), operands.Span());
    }
}

Id EmitImageSampleExplicitLod(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords,
                              Id lod, const IR::Value& offset) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const ImageOperands operands(ctx, false, true, false, lod, offset);
    return Emit(&EmitContext::OpImageSparseSampleExplicitLod,
                &EmitContext::OpImageSampleExplicitLod, ctx, inst, ctx.F32[4],
                Texture(ctx, info, index), coords, operands.Mask(), operands.Span());
}

Id EmitImageSampleDrefImplicitLod(EmitContext& ctx, IR::Inst* inst, const IR::Value& index,
                                  Id coords, Id dref, Id bias_lc, const IR::Value& offset) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    if (ctx.stage == Stage::Fragment) {
        const ImageOperands operands(ctx, info.has_bias != 0, false, info.has_lod_clamp != 0,
                                     bias_lc, offset);
        return Emit(&EmitContext::OpImageSparseSampleDrefImplicitLod,
                    &EmitContext::OpImageSampleDrefImplicitLod, ctx, inst, ctx.F32[1],
                    Texture(ctx, info, index), coords, dref, operands.MaskOptional(),
                    operands.Span());
    } else {
        // Implicit lods in compute behave on hardware as if sampling from LOD 0.
        // This check is to ensure all drivers behave this way.
        const Id lod{ctx.Const(0.0f)};
        const ImageOperands operands(ctx, false, true, false, lod, offset);
        return Emit(&EmitContext::OpImageSparseSampleDrefExplicitLod,
                    &EmitContext::OpImageSampleDrefExplicitLod, ctx, inst, ctx.F32[1],
                    Texture(ctx, info, index), coords, dref, operands.Mask(), operands.Span());
    }
}

Id EmitImageSampleDrefExplicitLod(EmitContext& ctx, IR::Inst* inst, const IR::Value& index,
                                  Id coords, Id dref, Id lod, const IR::Value& offset) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const ImageOperands operands(ctx, false, true, false, lod, offset);
    return Emit(&EmitContext::OpImageSparseSampleDrefExplicitLod,
                &EmitContext::OpImageSampleDrefExplicitLod, ctx, inst, ctx.F32[1],
                Texture(ctx, info, index), coords, dref, operands.Mask(), operands.Span());
}

Id EmitImageGather(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords,
                   const IR::Value& offset, const IR::Value& offset2) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const ImageOperands operands(ctx, offset, offset2);
    if (ctx.profile.need_gather_subpixel_offset) {
        coords = ImageGatherSubpixelOffset(ctx, info, TextureImage(ctx, info, index), coords);
    }
    return Emit(&EmitContext::OpImageSparseGather, &EmitContext::OpImageGather, ctx, inst,
                ctx.F32[4], Texture(ctx, info, index), coords, ctx.Const(info.gather_component),
                operands.MaskOptional(), operands.Span());
}

Id EmitImageGatherDref(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords,
                       const IR::Value& offset, const IR::Value& offset2, Id dref) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const ImageOperands operands(ctx, offset, offset2);
    if (ctx.profile.need_gather_subpixel_offset) {
        coords = ImageGatherSubpixelOffset(ctx, info, TextureImage(ctx, info, index), coords);
    }
    return Emit(&EmitContext::OpImageSparseDrefGather, &EmitContext::OpImageDrefGather, ctx, inst,
                ctx.F32[4], Texture(ctx, info, index), coords, dref, operands.MaskOptional(),
                operands.Span());
}

Id EmitImageFetch(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords, Id offset,
                  Id lod, Id ms) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    AddOffsetToCoordinates(ctx, info, coords, offset);
    if (info.type == TextureType::Buffer) {
        lod = Id{};
    }
    if (Sirit::ValidId(ms)) {
        // This image is multisampled, lod must be implicit
        lod = Id{};
    }
    const ImageOperands operands(lod, ms);
    return Emit(&EmitContext::OpImageSparseFetch, &EmitContext::OpImageFetch, ctx, inst, ctx.F32[4],
                TextureImage(ctx, info, index), coords, operands.MaskOptional(), operands.Span());
}

Id EmitImageQueryDimensions(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id lod,
                            const IR::Value& skip_mips_val) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const Id image{TextureImage(ctx, info, index)};
    const Id zero{ctx.u32_zero_value};
    const bool skip_mips{skip_mips_val.U1()};
    const auto mips{[&] { return skip_mips ? zero : ctx.OpImageQueryLevels(ctx.U32[1], image); }};
    const bool is_msaa{IsTextureMsaa(ctx, info)};
    const bool uses_lod{!is_msaa && info.type != TextureType::Buffer};
    const auto query{[&](Id type) {
        return uses_lod ? ctx.OpImageQuerySizeLod(type, image, lod)
                        : ctx.OpImageQuerySize(type, image);
    }};
    switch (info.type) {
    case TextureType::Color1D:
        return ctx.OpCompositeConstruct(ctx.U32[4], query(ctx.U32[1]), zero, zero, mips());
    case TextureType::ColorArray1D:
    case TextureType::Color2D:
    case TextureType::ColorCube:
    case TextureType::Color2DRect:
        return ctx.OpCompositeConstruct(ctx.U32[4], query(ctx.U32[2]), zero, mips());
    case TextureType::ColorArray2D:
    case TextureType::Color3D:
    case TextureType::ColorArrayCube:
        return ctx.OpCompositeConstruct(ctx.U32[4], query(ctx.U32[3]), mips());
    case TextureType::Buffer:
        return ctx.OpCompositeConstruct(ctx.U32[4], query(ctx.U32[1]), zero, zero, mips());
    }
    throw LogicError("Unspecified image type {}", info.type.Value());
}

Id EmitImageQueryLod(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const Id zero{ctx.f32_zero_value};
    const Id sampler{Texture(ctx, info, index)};
    return ctx.OpCompositeConstruct(ctx.F32[4], ctx.OpImageQueryLod(ctx.F32[2], sampler, coords),
                                    zero, zero);
}

Id EmitImageGradient(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords,
                     Id derivatives, const IR::Value& offset, Id lod_clamp) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const auto operands = info.num_derivatives == 3
                              ? ImageOperands(ctx, info.has_lod_clamp != 0, derivatives,
                                              ctx.Def(offset), {}, lod_clamp)
                              : ImageOperands(ctx, info.has_lod_clamp != 0, derivatives,
                                              info.num_derivatives, offset, lod_clamp);
    return Emit(&EmitContext::OpImageSparseSampleExplicitLod,
                &EmitContext::OpImageSampleExplicitLod, ctx, inst, ctx.F32[4],
                Texture(ctx, info, index), coords, operands.Mask(), operands.Span());
}

Id EmitImageRead(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    if (info.image_format == ImageFormat::Typeless && !ctx.profile.support_typeless_image_loads) {
        LOG_WARNING(Shader_SPIRV, "Typeless image read not supported by host");
        return ctx.ConstantNull(ctx.U32[4]);
    }
    const auto [image, is_integer] = Image(ctx, index, info);
    const Id result_type{is_integer ? ctx.U32[4] : ctx.F32[4]};
    Id color{Emit(&EmitContext::OpImageSparseRead, &EmitContext::OpImageRead, ctx, inst,
                  result_type, image, coords, std::nullopt, std::span<const Id>{})};
    if (!is_integer) {
        color = ctx.OpBitcast(ctx.U32[4], color);
    }
    return color;
}

void EmitImageWrite(EmitContext& ctx, IR::Inst* inst, const IR::Value& index, Id coords, Id color) {
    const auto info{inst->Flags<IR::TextureInstInfo>()};
    const auto [image, is_integer] = Image(ctx, index, info);
    if (!is_integer) {
        color = ctx.OpBitcast(ctx.F32[4], color);
    }
    ctx.OpImageWrite(image, coords, color);
}

Id EmitIsTextureScaled(EmitContext& ctx, const IR::Value& index) {
    if (ctx.profile.unified_descriptor_binding) {
        const Id member_index{ctx.Const(ctx.rescaling_textures_member_index)};
        return IsScaled(ctx, index, member_index, ctx.texture_rescaling_index);
    } else {
        const Id composite{ctx.OpLoad(ctx.F32[4], ctx.rescaling_uniform_constant)};
        const Id mask_f32{ctx.OpCompositeExtract(ctx.F32[1], composite, 0u)};
        const Id mask{ctx.OpBitcast(ctx.U32[1], mask_f32)};
        return BitTest(ctx, mask, ctx.Def(index));
    }
}

Id EmitIsImageScaled(EmitContext& ctx, const IR::Value& index) {
    if (ctx.profile.unified_descriptor_binding) {
        const Id member_index{ctx.Const(ctx.rescaling_images_member_index)};
        return IsScaled(ctx, index, member_index, ctx.image_rescaling_index);
    } else {
        const Id composite{ctx.OpLoad(ctx.F32[4], ctx.rescaling_uniform_constant)};
        const Id mask_f32{ctx.OpCompositeExtract(ctx.F32[1], composite, 1u)};
        const Id mask{ctx.OpBitcast(ctx.U32[1], mask_f32)};
        return BitTest(ctx, mask, ctx.Def(index));
    }
}

} // namespace Shader::Backend::SPIRV