summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/frontend/maxwell/control_flow.cpp
blob: dce414cb47861f33ee111bd7330bda7b945c49e5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <algorithm>
#include <array>
#include <optional>
#include <string>
#include <utility>

#include <fmt/format.h>

#include "common/polyfill_ranges.h"
#include "shader_recompiler/exception.h"
#include "shader_recompiler/frontend/maxwell/control_flow.h"
#include "shader_recompiler/frontend/maxwell/decode.h"
#include "shader_recompiler/frontend/maxwell/indirect_branch_table_track.h"
#include "shader_recompiler/frontend/maxwell/location.h"

namespace Shader::Maxwell::Flow {
namespace {
struct Compare {
    bool operator()(const Block& lhs, Location rhs) const noexcept {
        return lhs.begin < rhs;
    }

    bool operator()(Location lhs, const Block& rhs) const noexcept {
        return lhs < rhs.begin;
    }

    bool operator()(const Block& lhs, const Block& rhs) const noexcept {
        return lhs.begin < rhs.begin;
    }
};

u32 BranchOffset(Location pc, Instruction inst) {
    return pc.Offset() + static_cast<u32>(inst.branch.Offset()) + 8u;
}

void Split(Block* old_block, Block* new_block, Location pc) {
    if (pc <= old_block->begin || pc >= old_block->end) {
        throw InvalidArgument("Invalid address to split={}", pc);
    }
    *new_block = Block{};
    new_block->begin = pc;
    new_block->end = old_block->end;
    new_block->end_class = old_block->end_class;
    new_block->cond = old_block->cond;
    new_block->stack = old_block->stack;
    new_block->branch_true = old_block->branch_true;
    new_block->branch_false = old_block->branch_false;
    new_block->function_call = old_block->function_call;
    new_block->return_block = old_block->return_block;
    new_block->branch_reg = old_block->branch_reg;
    new_block->branch_offset = old_block->branch_offset;
    new_block->indirect_branches = std::move(old_block->indirect_branches);

    const Location old_begin{old_block->begin};
    Stack old_stack{std::move(old_block->stack)};
    *old_block = Block{};
    old_block->begin = old_begin;
    old_block->end = pc;
    old_block->end_class = EndClass::Branch;
    old_block->cond = IR::Condition(true);
    old_block->stack = old_stack;
    old_block->branch_true = new_block;
    old_block->branch_false = nullptr;
}

Token OpcodeToken(Opcode opcode) {
    switch (opcode) {
    case Opcode::PBK:
    case Opcode::BRK:
        return Token::PBK;
    case Opcode::PCNT:
    case Opcode::CONT:
        return Token::PCNT;
    case Opcode::PEXIT:
    case Opcode::EXIT:
        return Token::PEXIT;
    case Opcode::PLONGJMP:
    case Opcode::LONGJMP:
        return Token::PLONGJMP;
    case Opcode::PRET:
    case Opcode::RET:
    case Opcode::CAL:
        return Token::PRET;
    case Opcode::SSY:
    case Opcode::SYNC:
        return Token::SSY;
    default:
        throw InvalidArgument("{}", opcode);
    }
}

bool IsAbsoluteJump(Opcode opcode) {
    switch (opcode) {
    case Opcode::JCAL:
    case Opcode::JMP:
    case Opcode::JMX:
        return true;
    default:
        return false;
    }
}

bool HasFlowTest(Opcode opcode) {
    switch (opcode) {
    case Opcode::BRA:
    case Opcode::BRX:
    case Opcode::EXIT:
    case Opcode::JMP:
    case Opcode::JMX:
    case Opcode::KIL:
    case Opcode::BRK:
    case Opcode::CONT:
    case Opcode::LONGJMP:
    case Opcode::RET:
    case Opcode::SYNC:
        return true;
    case Opcode::CAL:
    case Opcode::JCAL:
        return false;
    default:
        throw InvalidArgument("Invalid branch {}", opcode);
    }
}

std::string NameOf(const Block& block) {
    if (block.begin.IsVirtual()) {
        return fmt::format("\"Virtual {}\"", block.begin);
    } else {
        return fmt::format("\"{}\"", block.begin);
    }
}
} // Anonymous namespace

void Stack::Push(Token token, Location target) {
    entries.push_back({
        .token = token,
        .target{target},
    });
}

std::pair<Location, Stack> Stack::Pop(Token token) const {
    const std::optional<Location> pc{Peek(token)};
    if (!pc) {
        throw LogicError("Token could not be found");
    }
    return {*pc, Remove(token)};
}

std::optional<Location> Stack::Peek(Token token) const {
    const auto it{std::find_if(entries.rbegin(), entries.rend(),
                               [token](const auto& entry) { return entry.token == token; })};
    if (it == entries.rend()) {
        return std::nullopt;
    }
    return it->target;
}

Stack Stack::Remove(Token token) const {
    const auto it{std::find_if(entries.rbegin(), entries.rend(),
                               [token](const auto& entry) { return entry.token == token; })};
    const auto pos{std::distance(entries.rbegin(), it)};
    Stack result;
    result.entries.insert(result.entries.end(), entries.begin(), entries.end() - pos - 1);
    return result;
}

bool Block::Contains(Location pc) const noexcept {
    return pc >= begin && pc < end;
}

Function::Function(ObjectPool<Block>& block_pool, Location start_address)
    : entrypoint{start_address} {
    Label& label{labels.emplace_back()};
    label.address = start_address;
    label.block = block_pool.Create(Block{});
    label.block->begin = start_address;
    label.block->end = start_address;
    label.block->end_class = EndClass::Branch;
    label.block->cond = IR::Condition(true);
    label.block->branch_true = nullptr;
    label.block->branch_false = nullptr;
}

CFG::CFG(Environment& env_, ObjectPool<Block>& block_pool_, Location start_address,
         bool exits_to_dispatcher_)
    : env{env_}, block_pool{block_pool_}, program_start{start_address}, exits_to_dispatcher{
                                                                            exits_to_dispatcher_} {
    if (exits_to_dispatcher) {
        dispatch_block = block_pool.Create(Block{});
        dispatch_block->begin = {};
        dispatch_block->end = {};
        dispatch_block->end_class = EndClass::Exit;
        dispatch_block->cond = IR::Condition(true);
        dispatch_block->stack = {};
        dispatch_block->branch_true = nullptr;
        dispatch_block->branch_false = nullptr;
    }
    functions.emplace_back(block_pool, start_address);
    for (FunctionId function_id = 0; function_id < functions.size(); ++function_id) {
        while (!functions[function_id].labels.empty()) {
            Function& function{functions[function_id]};
            Label label{function.labels.back()};
            function.labels.pop_back();
            AnalyzeLabel(function_id, label);
        }
    }
    if (exits_to_dispatcher) {
        const auto last_block{functions[0].blocks.rbegin()};
        dispatch_block->begin = last_block->end + 1;
        dispatch_block->end = last_block->end + 1;
        functions[0].blocks.insert(*dispatch_block);
    }
}

void CFG::AnalyzeLabel(FunctionId function_id, Label& label) {
    if (InspectVisitedBlocks(function_id, label)) {
        // Label address has been visited
        return;
    }
    // Try to find the next block
    Function* const function{&functions[function_id]};
    Location pc{label.address};
    const auto next_it{function->blocks.upper_bound(pc, Compare{})};
    const bool is_last{next_it == function->blocks.end()};
    Block* const next{is_last ? nullptr : &*next_it};
    // Insert before the next block
    Block* const block{label.block};
    // Analyze instructions until it reaches an already visited block or there's a branch
    bool is_branch{false};
    while (!next || pc < next->begin) {
        is_branch = AnalyzeInst(block, function_id, pc) == AnalysisState::Branch;
        if (is_branch) {
            break;
        }
        ++pc;
    }
    if (!is_branch) {
        // If the block finished without a branch,
        // it means that the next instruction is already visited, jump to it
        block->end = pc;
        block->cond = IR::Condition{true};
        block->branch_true = next;
        block->branch_false = nullptr;
    }
    // Function's pointer might be invalid, resolve it again
    // Insert the new block
    functions[function_id].blocks.insert(*block);
}

bool CFG::InspectVisitedBlocks(FunctionId function_id, const Label& label) {
    const Location pc{label.address};
    Function& function{functions[function_id]};
    const auto it{
        std::ranges::find_if(function.blocks, [pc](auto& block) { return block.Contains(pc); })};
    if (it == function.blocks.end()) {
        // Address has not been visited
        return false;
    }
    Block* const visited_block{&*it};
    if (visited_block->begin == pc) {
        throw LogicError("Dangling block");
    }
    Block* const new_block{label.block};
    Split(visited_block, new_block, pc);
    function.blocks.insert(it, *new_block);
    return true;
}

CFG::AnalysisState CFG::AnalyzeInst(Block* block, FunctionId function_id, Location pc) {
    const Instruction inst{env.ReadInstruction(pc.Offset())};
    const Opcode opcode{Decode(inst.raw)};
    switch (opcode) {
    case Opcode::BRA:
    case Opcode::JMP:
    case Opcode::RET:
        if (!AnalyzeBranch(block, function_id, pc, inst, opcode)) {
            return AnalysisState::Continue;
        }
        switch (opcode) {
        case Opcode::BRA:
        case Opcode::JMP:
            AnalyzeBRA(block, function_id, pc, inst, IsAbsoluteJump(opcode));
            break;
        case Opcode::RET:
            block->end_class = EndClass::Return;
            break;
        default:
            break;
        }
        block->end = pc;
        return AnalysisState::Branch;
    case Opcode::BRK:
    case Opcode::CONT:
    case Opcode::LONGJMP:
    case Opcode::SYNC: {
        if (!AnalyzeBranch(block, function_id, pc, inst, opcode)) {
            return AnalysisState::Continue;
        }
        const auto [stack_pc, new_stack]{block->stack.Pop(OpcodeToken(opcode))};
        block->branch_true = AddLabel(block, new_stack, stack_pc, function_id);
        block->end = pc;
        return AnalysisState::Branch;
    }
    case Opcode::KIL: {
        const Predicate pred{inst.Pred()};
        const auto ir_pred{static_cast<IR::Pred>(pred.index)};
        const IR::Condition cond{inst.branch.flow_test, ir_pred, pred.negated};
        AnalyzeCondInst(block, function_id, pc, EndClass::Kill, cond);
        return AnalysisState::Branch;
    }
    case Opcode::PBK:
    case Opcode::PCNT:
    case Opcode::PEXIT:
    case Opcode::PLONGJMP:
    case Opcode::SSY:
        block->stack.Push(OpcodeToken(opcode), BranchOffset(pc, inst));
        return AnalysisState::Continue;
    case Opcode::BRX:
    case Opcode::JMX:
        return AnalyzeBRX(block, pc, inst, IsAbsoluteJump(opcode), function_id);
    case Opcode::EXIT:
        return AnalyzeEXIT(block, function_id, pc, inst);
    case Opcode::PRET:
        throw NotImplementedException("PRET flow analysis");
    case Opcode::CAL:
    case Opcode::JCAL: {
        const bool is_absolute{IsAbsoluteJump(opcode)};
        const Location cal_pc{is_absolute ? inst.branch.Absolute() : BranchOffset(pc, inst)};
        // Technically CAL pushes into PRET, but that's implicit in the function call for us
        // Insert the function into the list if it doesn't exist
        const auto it{std::ranges::find(functions, cal_pc, &Function::entrypoint)};
        const bool exists{it != functions.end()};
        const FunctionId call_id{exists ? static_cast<size_t>(std::distance(functions.begin(), it))
                                        : functions.size()};
        if (!exists) {
            functions.emplace_back(block_pool, cal_pc);
        }
        block->end_class = EndClass::Call;
        block->function_call = call_id;
        block->return_block = AddLabel(block, block->stack, pc + 1, function_id);
        block->end = pc;
        return AnalysisState::Branch;
    }
    default:
        break;
    }
    const Predicate pred{inst.Pred()};
    if (pred == Predicate{true} || pred == Predicate{false}) {
        return AnalysisState::Continue;
    }
    const IR::Condition cond{static_cast<IR::Pred>(pred.index), pred.negated};
    AnalyzeCondInst(block, function_id, pc, EndClass::Branch, cond);
    return AnalysisState::Branch;
}

void CFG::AnalyzeCondInst(Block* block, FunctionId function_id, Location pc,
                          EndClass insn_end_class, IR::Condition cond) {
    if (block->begin != pc) {
        // If the block doesn't start in the conditional instruction
        // mark it as a label to visit it later
        block->end = pc;
        block->cond = IR::Condition{true};
        block->branch_true = AddLabel(block, block->stack, pc, function_id);
        block->branch_false = nullptr;
        return;
    }
    // Create a virtual block and a conditional block
    Block* const conditional_block{block_pool.Create()};
    Block virtual_block{};
    virtual_block.begin = block->begin.Virtual();
    virtual_block.end = block->begin.Virtual();
    virtual_block.end_class = EndClass::Branch;
    virtual_block.stack = block->stack;
    virtual_block.cond = cond;
    virtual_block.branch_true = conditional_block;
    virtual_block.branch_false = nullptr;
    // Save the contents of the visited block in the conditional block
    *conditional_block = std::move(*block);
    // Impersonate the visited block with a virtual block
    *block = std::move(virtual_block);
    // Set the end properties of the conditional instruction
    conditional_block->end = pc + 1;
    conditional_block->end_class = insn_end_class;
    // Add a label to the instruction after the conditional instruction
    Block* const endif_block{AddLabel(conditional_block, block->stack, pc + 1, function_id)};
    // Branch to the next instruction from the virtual block
    block->branch_false = endif_block;
    // And branch to it from the conditional instruction if it is a branch or a kill instruction
    // Kill instructions are considered a branch because they demote to a helper invocation and
    // execution may continue.
    if (insn_end_class == EndClass::Branch || insn_end_class == EndClass::Kill) {
        conditional_block->cond = IR::Condition{true};
        conditional_block->branch_true = endif_block;
        conditional_block->branch_false = nullptr;
    }
    // Finally insert the condition block into the list of blocks
    functions[function_id].blocks.insert(*conditional_block);
}

bool CFG::AnalyzeBranch(Block* block, FunctionId function_id, Location pc, Instruction inst,
                        Opcode opcode) {
    if (inst.branch.is_cbuf) {
        throw NotImplementedException("Branch with constant buffer offset");
    }
    const Predicate pred{inst.Pred()};
    if (pred == Predicate{false}) {
        return false;
    }
    const bool has_flow_test{HasFlowTest(opcode)};
    const IR::FlowTest flow_test{has_flow_test ? inst.branch.flow_test.Value() : IR::FlowTest::T};
    if (pred != Predicate{true} || flow_test != IR::FlowTest::T) {
        block->cond = IR::Condition(flow_test, static_cast<IR::Pred>(pred.index), pred.negated);
        block->branch_false = AddLabel(block, block->stack, pc + 1, function_id);
    } else {
        block->cond = IR::Condition{true};
    }
    return true;
}

void CFG::AnalyzeBRA(Block* block, FunctionId function_id, Location pc, Instruction inst,
                     bool is_absolute) {
    const Location bra_pc{is_absolute ? inst.branch.Absolute() : BranchOffset(pc, inst)};
    block->branch_true = AddLabel(block, block->stack, bra_pc, function_id);
}

CFG::AnalysisState CFG::AnalyzeBRX(Block* block, Location pc, Instruction inst, bool is_absolute,
                                   FunctionId function_id) {
    const std::optional brx_table{TrackIndirectBranchTable(env, pc, program_start)};
    if (!brx_table) {
        TrackIndirectBranchTable(env, pc, program_start);
        throw NotImplementedException("Failed to track indirect branch");
    }
    const IR::FlowTest flow_test{inst.branch.flow_test};
    const Predicate pred{inst.Pred()};
    if (flow_test != IR::FlowTest::T || pred != Predicate{true}) {
        throw NotImplementedException("Conditional indirect branch");
    }
    std::vector<u32> targets;
    targets.reserve(brx_table->num_entries);
    for (u32 i = 0; i < brx_table->num_entries; ++i) {
        u32 target{env.ReadCbufValue(brx_table->cbuf_index, brx_table->cbuf_offset + i * 4)};
        if (!is_absolute) {
            target += pc.Offset();
        }
        target += static_cast<u32>(brx_table->branch_offset);
        target += 8;
        targets.push_back(target);
    }
    std::ranges::sort(targets);
    targets.erase(std::unique(targets.begin(), targets.end()), targets.end());

    block->indirect_branches.reserve(targets.size());
    for (const u32 target : targets) {
        Block* const branch{AddLabel(block, block->stack, target, function_id)};
        block->indirect_branches.push_back({
            .block = branch,
            .address = target,
        });
    }
    block->cond = IR::Condition{true};
    block->end = pc + 1;
    block->end_class = EndClass::IndirectBranch;
    block->branch_reg = brx_table->branch_reg;
    block->branch_offset = brx_table->branch_offset + 8;
    if (!is_absolute) {
        block->branch_offset += pc.Offset();
    }
    return AnalysisState::Branch;
}

CFG::AnalysisState CFG::AnalyzeEXIT(Block* block, FunctionId function_id, Location pc,
                                    Instruction inst) {
    const IR::FlowTest flow_test{inst.branch.flow_test};
    const Predicate pred{inst.Pred()};
    if (pred == Predicate{false} || flow_test == IR::FlowTest::F) {
        // EXIT will never be taken
        return AnalysisState::Continue;
    }
    if (exits_to_dispatcher && function_id != 0) {
        throw NotImplementedException("Dispatch EXIT on external function");
    }
    if (pred != Predicate{true} || flow_test != IR::FlowTest::T) {
        if (block->stack.Peek(Token::PEXIT).has_value()) {
            throw NotImplementedException("Conditional EXIT with PEXIT token");
        }
        const IR::Condition cond{flow_test, static_cast<IR::Pred>(pred.index), pred.negated};
        if (exits_to_dispatcher) {
            block->end = pc;
            block->end_class = EndClass::Branch;
            block->cond = cond;
            block->branch_true = dispatch_block;
            block->branch_false = AddLabel(block, block->stack, pc + 1, function_id);
            return AnalysisState::Branch;
        }
        AnalyzeCondInst(block, function_id, pc, EndClass::Exit, cond);
        return AnalysisState::Branch;
    }
    if (const std::optional<Location> exit_pc{block->stack.Peek(Token::PEXIT)}) {
        const Stack popped_stack{block->stack.Remove(Token::PEXIT)};
        block->cond = IR::Condition{true};
        block->branch_true = AddLabel(block, popped_stack, *exit_pc, function_id);
        block->branch_false = nullptr;
        return AnalysisState::Branch;
    }
    if (exits_to_dispatcher) {
        block->cond = IR::Condition{true};
        block->end = pc;
        block->end_class = EndClass::Branch;
        block->branch_true = dispatch_block;
        block->branch_false = nullptr;
        return AnalysisState::Branch;
    }
    block->end = pc + 1;
    block->end_class = EndClass::Exit;
    return AnalysisState::Branch;
}

Block* CFG::AddLabel(Block* block, Stack stack, Location pc, FunctionId function_id) {
    Function& function{functions[function_id]};
    if (block->begin == pc) {
        // Jumps to itself
        return block;
    }
    if (const auto it{function.blocks.find(pc, Compare{})}; it != function.blocks.end()) {
        // Block already exists and it has been visited
        if (function.blocks.begin() != it) {
            // Check if the previous node is the virtual variant of the label
            // This won't exist if a virtual node is not needed or it hasn't been visited
            // If it hasn't been visited and a virtual node is needed, this will still behave as
            // expected because the node impersonated with its virtual node.
            const auto prev{std::prev(it)};
            if (it->begin.Virtual() == prev->begin) {
                return &*prev;
            }
        }
        return &*it;
    }
    // Make sure we don't insert the same layer twice
    const auto label_it{std::ranges::find(function.labels, pc, &Label::address)};
    if (label_it != function.labels.end()) {
        return label_it->block;
    }
    Block* const new_block{block_pool.Create()};
    new_block->begin = pc;
    new_block->end = pc;
    new_block->end_class = EndClass::Branch;
    new_block->cond = IR::Condition(true);
    new_block->stack = stack;
    new_block->branch_true = nullptr;
    new_block->branch_false = nullptr;
    function.labels.push_back(Label{
        .address{pc},
        .block = new_block,
        .stack{std::move(stack)},
    });
    return new_block;
}

std::string CFG::Dot() const {
    int node_uid{0};

    std::string dot{"digraph shader {\n"};
    for (const Function& function : functions) {
        dot += fmt::format("\tsubgraph cluster_{} {{\n", function.entrypoint);
        dot += fmt::format("\t\tnode [style=filled];\n");
        for (const Block& block : function.blocks) {
            const std::string name{NameOf(block)};
            const auto add_branch = [&](Block* branch, bool add_label) {
                dot += fmt::format("\t\t{}->{}", name, NameOf(*branch));
                if (add_label && block.cond != IR::Condition{true} &&
                    block.cond != IR::Condition{false}) {
                    dot += fmt::format(" [label=\"{}\"]", block.cond);
                }
                dot += '\n';
            };
            dot += fmt::format("\t\t{};\n", name);
            switch (block.end_class) {
            case EndClass::Branch:
                if (block.cond != IR::Condition{false}) {
                    add_branch(block.branch_true, true);
                }
                if (block.cond != IR::Condition{true}) {
                    add_branch(block.branch_false, false);
                }
                break;
            case EndClass::IndirectBranch:
                for (const IndirectBranch& branch : block.indirect_branches) {
                    add_branch(branch.block, false);
                }
                break;
            case EndClass::Call:
                dot += fmt::format("\t\t{}->N{};\n", name, node_uid);
                dot += fmt::format("\t\tN{}->{};\n", node_uid, NameOf(*block.return_block));
                dot += fmt::format("\t\tN{} [label=\"Call {}\"][shape=square][style=stripped];\n",
                                   node_uid, block.function_call);
                dot += '\n';
                ++node_uid;
                break;
            case EndClass::Exit:
                dot += fmt::format("\t\t{}->N{};\n", name, node_uid);
                dot += fmt::format("\t\tN{} [label=\"Exit\"][shape=square][style=stripped];\n",
                                   node_uid);
                ++node_uid;
                break;
            case EndClass::Return:
                dot += fmt::format("\t\t{}->N{};\n", name, node_uid);
                dot += fmt::format("\t\tN{} [label=\"Return\"][shape=square][style=stripped];\n",
                                   node_uid);
                ++node_uid;
                break;
            case EndClass::Kill:
                dot += fmt::format("\t\t{}->N{};\n", name, node_uid);
                dot += fmt::format("\t\tN{} [label=\"Kill\"][shape=square][style=stripped];\n",
                                   node_uid);
                ++node_uid;
                break;
            }
        }
        if (function.entrypoint == 8) {
            dot += fmt::format("\t\tlabel = \"main\";\n");
        } else {
            dot += fmt::format("\t\tlabel = \"Function {}\";\n", function.entrypoint);
        }
        dot += "\t}\n";
    }
    if (!functions.empty()) {
        auto& function{functions.front()};
        if (function.blocks.empty()) {
            dot += "Start;\n";
        } else {
            dot += fmt::format("\tStart -> {};\n", NameOf(*function.blocks.begin()));
        }
        dot += fmt::format("\tStart [shape=diamond];\n");
    }
    dot += "}\n";
    return dot;
}

} // namespace Shader::Maxwell::Flow