summaryrefslogtreecommitdiffstats
path: root/src/shader_recompiler/frontend/maxwell/translate/impl/texture_gradient.cpp
blob: 4ce3dd0cd0a28be24af6034b5a7c9b50924d62c6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
// SPDX-FileCopyrightText: Copyright 2021 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include "common/bit_field.h"
#include "common/common_types.h"
#include "shader_recompiler/frontend/ir/modifiers.h"
#include "shader_recompiler/frontend/maxwell/translate/impl/impl.h"

namespace Shader::Maxwell {
namespace {

enum class TextureType : u64 {
    _1D,
    ARRAY_1D,
    _2D,
    ARRAY_2D,
    _3D,
    ARRAY_3D,
    CUBE,
    ARRAY_CUBE,
};

Shader::TextureType GetType(TextureType type) {
    switch (type) {
    case TextureType::_1D:
        return Shader::TextureType::Color1D;
    case TextureType::ARRAY_1D:
        return Shader::TextureType::ColorArray1D;
    case TextureType::_2D:
        return Shader::TextureType::Color2D;
    case TextureType::ARRAY_2D:
        return Shader::TextureType::ColorArray2D;
    case TextureType::_3D:
        return Shader::TextureType::Color3D;
    case TextureType::ARRAY_3D:
        throw NotImplementedException("3D array texture type");
    case TextureType::CUBE:
        return Shader::TextureType::ColorCube;
    case TextureType::ARRAY_CUBE:
        return Shader::TextureType::ColorArrayCube;
    }
    throw NotImplementedException("Invalid texture type {}", type);
}

IR::Value MakeOffset(TranslatorVisitor& v, IR::Reg reg, bool has_lod_clamp) {
    const IR::U32 value{v.X(reg)};
    const u32 base{has_lod_clamp ? 12U : 16U};
    return v.ir.CompositeConstruct(
        v.ir.BitFieldExtract(value, v.ir.Imm32(base), v.ir.Imm32(4), true),
        v.ir.BitFieldExtract(value, v.ir.Imm32(base + 4), v.ir.Imm32(4), true));
}

void Impl(TranslatorVisitor& v, u64 insn, bool is_bindless) {
    union {
        u64 raw;
        BitField<49, 1, u64> nodep;
        BitField<35, 1, u64> aoffi;
        BitField<50, 1, u64> lc;
        BitField<51, 3, IR::Pred> sparse_pred;
        BitField<0, 8, IR::Reg> dest_reg;
        BitField<8, 8, IR::Reg> coord_reg;
        BitField<20, 8, IR::Reg> derivative_reg;
        BitField<28, 3, TextureType> type;
        BitField<31, 4, u64> mask;
        BitField<36, 13, u64> cbuf_offset;
    } const txd{insn};

    const bool has_lod_clamp = txd.lc != 0;
    if (has_lod_clamp) {
        throw NotImplementedException("TXD.LC - CLAMP is not implemented");
    }

    IR::Value coords;
    u32 num_derivatives{};
    IR::Reg base_reg{txd.coord_reg};
    IR::Reg last_reg;
    IR::Value handle;
    if (is_bindless) {
        handle = v.X(base_reg++);
    } else {
        handle = v.ir.Imm32(static_cast<u32>(txd.cbuf_offset.Value() * 4));
    }

    const auto read_array{[&]() -> IR::F32 {
        const IR::U32 base{v.ir.Imm32(0)};
        const IR::U32 count{v.ir.Imm32(has_lod_clamp ? 12 : 16)};
        const IR::U32 array_index{v.ir.BitFieldExtract(v.X(last_reg), base, count)};
        return v.ir.ConvertUToF(32, 16, array_index);
    }};
    switch (txd.type) {
    case TextureType::_1D: {
        coords = v.F(base_reg);
        num_derivatives = 1;
        last_reg = base_reg + 1;
        break;
    }
    case TextureType::ARRAY_1D: {
        last_reg = base_reg + 1;
        coords = v.ir.CompositeConstruct(v.F(base_reg), read_array());
        num_derivatives = 1;
        break;
    }
    case TextureType::_2D: {
        last_reg = base_reg + 2;
        coords = v.ir.CompositeConstruct(v.F(base_reg), v.F(base_reg + 1));
        num_derivatives = 2;
        break;
    }
    case TextureType::ARRAY_2D: {
        last_reg = base_reg + 2;
        coords = v.ir.CompositeConstruct(v.F(base_reg), v.F(base_reg + 1), read_array());
        num_derivatives = 2;
        break;
    }
    default:
        throw NotImplementedException("Invalid texture type");
    }

    const IR::Reg derivative_reg{txd.derivative_reg};
    IR::Value derivatives;
    switch (num_derivatives) {
    case 1: {
        derivatives = v.ir.CompositeConstruct(v.F(derivative_reg), v.F(derivative_reg + 1));
        break;
    }
    case 2: {
        derivatives = v.ir.CompositeConstruct(v.F(derivative_reg), v.F(derivative_reg + 1),
                                              v.F(derivative_reg + 2), v.F(derivative_reg + 3));
        break;
    }
    default:
        throw NotImplementedException("Invalid texture type");
    }

    IR::Value offset;
    if (txd.aoffi != 0) {
        offset = MakeOffset(v, last_reg, has_lod_clamp);
    }

    IR::F32 lod_clamp;
    if (has_lod_clamp) {
        // Lod Clamp is a Fixed Point 4.8, we need to transform it to float.
        // to convert a fixed point, float(value) / float(1 << fixed_point)
        // in this case the fixed_point is 8.
        const IR::F32 conv4_8fixp_f{v.ir.Imm32(static_cast<f32>(1U << 8))};
        const IR::F32 fixp_lc{v.ir.ConvertUToF(
            32, 16, v.ir.BitFieldExtract(v.X(last_reg), v.ir.Imm32(20), v.ir.Imm32(12)))};
        lod_clamp = v.ir.FPMul(fixp_lc, conv4_8fixp_f);
    }

    IR::TextureInstInfo info{};
    info.type.Assign(GetType(txd.type));
    info.num_derivatives.Assign(num_derivatives);
    info.has_lod_clamp.Assign(has_lod_clamp ? 1 : 0);
    const IR::Value sample{
        v.ir.ImageGradient(handle, coords, derivatives, offset, lod_clamp, info)};

    IR::Reg dest_reg{txd.dest_reg};
    for (size_t element = 0; element < 4; ++element) {
        if (((txd.mask >> element) & 1) == 0) {
            continue;
        }
        v.F(dest_reg, IR::F32{v.ir.CompositeExtract(sample, element)});
        ++dest_reg;
    }
    if (txd.sparse_pred != IR::Pred::PT) {
        v.ir.SetPred(txd.sparse_pred, v.ir.LogicalNot(v.ir.GetSparseFromOp(sample)));
    }
}
} // Anonymous namespace

void TranslatorVisitor::TXD(u64 insn) {
    Impl(*this, insn, false);
}

void TranslatorVisitor::TXD_b(u64 insn) {
    Impl(*this, insn, true);
}

} // namespace Shader::Maxwell