summaryrefslogtreecommitdiffstats
path: root/src/tests/core/core_timing.cpp
blob: 7c432a63c5f7fb71cba893f19efd51d22e207190 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
// SPDX-FileCopyrightText: 2016 Dolphin Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later

#include <catch2/catch.hpp>

#include <array>
#include <bitset>
#include <chrono>
#include <cstdlib>
#include <memory>
#include <optional>
#include <string>

#include "core/core.h"
#include "core/core_timing.h"

namespace {
// Numbers are chosen randomly to make sure the correct one is given.
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
constexpr std::array<u64, 5> calls_order{{2, 0, 1, 4, 3}};
std::array<s64, 5> delays{};

std::bitset<CB_IDS.size()> callbacks_ran_flags;
u64 expected_callback = 0;

template <unsigned int IDX>
std::optional<std::chrono::nanoseconds> HostCallbackTemplate(std::uintptr_t user_data, s64 time,
                                                             std::chrono::nanoseconds ns_late) {
    static_assert(IDX < CB_IDS.size(), "IDX out of range");
    callbacks_ran_flags.set(IDX);
    REQUIRE(CB_IDS[IDX] == user_data);
    REQUIRE(CB_IDS[IDX] == CB_IDS[calls_order[expected_callback]]);
    delays[IDX] = ns_late.count();
    ++expected_callback;
    return std::nullopt;
}

struct ScopeInit final {
    ScopeInit() {
        core_timing.SetMulticore(true);
        core_timing.Initialize([]() {});
    }
    ~ScopeInit() {
        core_timing.Shutdown();
    }

    Core::Timing::CoreTiming core_timing;
};

u64 TestTimerSpeed(Core::Timing::CoreTiming& core_timing) {
    const u64 start = core_timing.GetGlobalTimeNs().count();
    volatile u64 placebo = 0;
    for (std::size_t i = 0; i < 1000; i++) {
        placebo = placebo + core_timing.GetGlobalTimeNs().count();
    }
    const u64 end = core_timing.GetGlobalTimeNs().count();
    return end - start;
}

} // Anonymous namespace

TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;
    std::vector<std::shared_ptr<Core::Timing::EventType>> events{
        Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
        Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
        Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
        Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
        Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
    };

    expected_callback = 0;

    core_timing.SyncPause(true);

    const u64 one_micro = 1000U;
    for (std::size_t i = 0; i < events.size(); i++) {
        const u64 order = calls_order[i];
        const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};

        core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
    }
    /// test pause
    REQUIRE(callbacks_ran_flags.none());

    core_timing.Pause(false); // No need to sync

    while (core_timing.HasPendingEvents())
        ;

    REQUIRE(callbacks_ran_flags.all());

    for (std::size_t i = 0; i < delays.size(); i++) {
        const double delay = static_cast<double>(delays[i]);
        const double micro = delay / 1000.0f;
        const double mili = micro / 1000.0f;
        printf("HostTimer Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
    }
}

TEST_CASE("CoreTiming[BasicOrderNoPausing]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;
    std::vector<std::shared_ptr<Core::Timing::EventType>> events{
        Core::Timing::CreateEvent("callbackA", HostCallbackTemplate<0>),
        Core::Timing::CreateEvent("callbackB", HostCallbackTemplate<1>),
        Core::Timing::CreateEvent("callbackC", HostCallbackTemplate<2>),
        Core::Timing::CreateEvent("callbackD", HostCallbackTemplate<3>),
        Core::Timing::CreateEvent("callbackE", HostCallbackTemplate<4>),
    };

    core_timing.SyncPause(true);
    core_timing.SyncPause(false);

    expected_callback = 0;

    const u64 start = core_timing.GetGlobalTimeNs().count();
    const u64 one_micro = 1000U;

    for (std::size_t i = 0; i < events.size(); i++) {
        const u64 order = calls_order[i];
        const auto future_ns = std::chrono::nanoseconds{static_cast<s64>(i * one_micro + 100)};
        core_timing.ScheduleEvent(future_ns, events[order], CB_IDS[order]);
    }

    const u64 end = core_timing.GetGlobalTimeNs().count();
    const double scheduling_time = static_cast<double>(end - start);
    const double timer_time = static_cast<double>(TestTimerSpeed(core_timing));

    while (core_timing.HasPendingEvents())
        ;

    REQUIRE(callbacks_ran_flags.all());

    for (std::size_t i = 0; i < delays.size(); i++) {
        const double delay = static_cast<double>(delays[i]);
        const double micro = delay / 1000.0f;
        const double mili = micro / 1000.0f;
        printf("HostTimer No Pausing Delay[%zu]: %.3f %.6f\n", i, micro, mili);
    }

    const double micro = scheduling_time / 1000.0f;
    const double mili = micro / 1000.0f;
    printf("HostTimer No Pausing Scheduling Time: %.3f %.6f\n", micro, mili);
    printf("HostTimer No Pausing Timer Time: %.3f %.6f\n", timer_time / 1000.f,
           timer_time / 1000000.f);
}