summaryrefslogtreecommitdiffstats
path: root/src/tests/core/core_timing.cpp
blob: ff2d11cc8ec07bee72c42245ec8ca35fbfd22fe7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
// Copyright 2016 Dolphin Emulator Project / 2017 Dolphin Emulator Project
// Licensed under GPLv2+
// Refer to the license.txt file included.

#include <catch2/catch.hpp>

#include <array>
#include <bitset>
#include <cstdlib>
#include <memory>
#include <string>

#include "common/file_util.h"
#include "core/core.h"
#include "core/core_timing.h"

namespace {
// Numbers are chosen randomly to make sure the correct one is given.
constexpr std::array<u64, 5> CB_IDS{{42, 144, 93, 1026, UINT64_C(0xFFFF7FFFF7FFFF)}};
constexpr int MAX_SLICE_LENGTH = 10000; // Copied from CoreTiming internals

std::bitset<CB_IDS.size()> callbacks_ran_flags;
u64 expected_callback = 0;
s64 lateness = 0;

template <unsigned int IDX>
void CallbackTemplate(u64 userdata, s64 cycles_late) {
    static_assert(IDX < CB_IDS.size(), "IDX out of range");
    callbacks_ran_flags.set(IDX);
    REQUIRE(CB_IDS[IDX] == userdata);
    REQUIRE(CB_IDS[IDX] == expected_callback);
    REQUIRE(lateness == cycles_late);
}

u64 callbacks_done = 0;

void EmptyCallback(u64 userdata, s64 cycles_late) {
    ++callbacks_done;
}

struct ScopeInit final {
    ScopeInit() {
        core_timing.Initialize();
    }
    ~ScopeInit() {
        core_timing.Shutdown();
    }

    Core::Timing::CoreTiming core_timing;
};

void AdvanceAndCheck(Core::Timing::CoreTiming& core_timing, u32 idx, u32 context = 0,
                     int expected_lateness = 0, int cpu_downcount = 0) {
    callbacks_ran_flags = 0;
    expected_callback = CB_IDS[idx];
    lateness = expected_lateness;

    // Pretend we executed X cycles of instructions.
    core_timing.SwitchContext(context);
    core_timing.AddTicks(core_timing.GetDowncount() - cpu_downcount);
    core_timing.Advance();
    core_timing.SwitchContext((context + 1) % 4);

    REQUIRE(decltype(callbacks_ran_flags)().set(idx) == callbacks_ran_flags);
}
} // Anonymous namespace

TEST_CASE("CoreTiming[BasicOrder]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    std::shared_ptr<Core::Timing::EventType> cb_a =
        Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
    std::shared_ptr<Core::Timing::EventType> cb_b =
        Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);
    std::shared_ptr<Core::Timing::EventType> cb_c =
        Core::Timing::CreateEvent("callbackC", CallbackTemplate<2>);
    std::shared_ptr<Core::Timing::EventType> cb_d =
        Core::Timing::CreateEvent("callbackD", CallbackTemplate<3>);
    std::shared_ptr<Core::Timing::EventType> cb_e =
        Core::Timing::CreateEvent("callbackE", CallbackTemplate<4>);

    // Enter slice 0
    core_timing.ResetRun();

    // D -> B -> C -> A -> E
    core_timing.SwitchContext(0);
    core_timing.ScheduleEvent(1000, cb_a, CB_IDS[0]);
    REQUIRE(1000 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(500, cb_b, CB_IDS[1]);
    REQUIRE(500 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(800, cb_c, CB_IDS[2]);
    REQUIRE(500 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(100, cb_d, CB_IDS[3]);
    REQUIRE(100 == core_timing.GetDowncount());
    core_timing.ScheduleEvent(1200, cb_e, CB_IDS[4]);
    REQUIRE(100 == core_timing.GetDowncount());

    AdvanceAndCheck(core_timing, 3, 0);
    AdvanceAndCheck(core_timing, 1, 1);
    AdvanceAndCheck(core_timing, 2, 2);
    AdvanceAndCheck(core_timing, 0, 3);
    AdvanceAndCheck(core_timing, 4, 0);
}

TEST_CASE("CoreTiming[FairSharing]", "[core]") {

    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    std::shared_ptr<Core::Timing::EventType> empty_callback =
        Core::Timing::CreateEvent("empty_callback", EmptyCallback);

    callbacks_done = 0;
    u64 MAX_CALLBACKS = 10;
    for (std::size_t i = 0; i < 10; i++) {
        core_timing.ScheduleEvent(i * 3333U, empty_callback, 0);
    }

    const s64 advances = MAX_SLICE_LENGTH / 10;
    core_timing.ResetRun();
    u64 current_time = core_timing.GetTicks();
    bool keep_running{};
    do {
        keep_running = false;
        for (u32 active_core = 0; active_core < 4; ++active_core) {
            core_timing.SwitchContext(active_core);
            if (core_timing.CanCurrentContextRun()) {
                core_timing.AddTicks(std::min<s64>(advances, core_timing.GetDowncount()));
                core_timing.Advance();
            }
            keep_running |= core_timing.CanCurrentContextRun();
        }
    } while (keep_running);
    u64 current_time_2 = core_timing.GetTicks();

    REQUIRE(MAX_CALLBACKS == callbacks_done);
    REQUIRE(current_time_2 == current_time + MAX_SLICE_LENGTH * 4);
}

TEST_CASE("Core::Timing[PredictableLateness]", "[core]") {
    ScopeInit guard;
    auto& core_timing = guard.core_timing;

    std::shared_ptr<Core::Timing::EventType> cb_a =
        Core::Timing::CreateEvent("callbackA", CallbackTemplate<0>);
    std::shared_ptr<Core::Timing::EventType> cb_b =
        Core::Timing::CreateEvent("callbackB", CallbackTemplate<1>);

    // Enter slice 0
    core_timing.ResetRun();

    core_timing.ScheduleEvent(100, cb_a, CB_IDS[0]);
    core_timing.ScheduleEvent(200, cb_b, CB_IDS[1]);

    AdvanceAndCheck(core_timing, 0, 0, 10, -10); // (100 - 10)
    AdvanceAndCheck(core_timing, 1, 1, 50, -50);
}