summaryrefslogtreecommitdiffstats
path: root/src/video_core/renderer_vulkan/vk_resource_manager.cpp
blob: 525b4bb46facbb461b86356b07db2d02eb2313d7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <algorithm>
#include <optional>
#include "common/assert.h"
#include "common/logging/log.h"
#include "video_core/renderer_vulkan/declarations.h"
#include "video_core/renderer_vulkan/vk_device.h"
#include "video_core/renderer_vulkan/vk_resource_manager.h"

namespace Vulkan {

// TODO(Rodrigo): Fine tune these numbers.
constexpr std::size_t COMMAND_BUFFER_POOL_SIZE = 0x1000;
constexpr std::size_t FENCES_GROW_STEP = 0x40;

class CommandBufferPool final : public VKFencedPool {
public:
    CommandBufferPool(const VKDevice& device)
        : VKFencedPool(COMMAND_BUFFER_POOL_SIZE), device{device} {}

    void Allocate(std::size_t begin, std::size_t end) override {
        const auto dev = device.GetLogical();
        const auto& dld = device.GetDispatchLoader();
        const u32 graphics_family = device.GetGraphicsFamily();

        auto pool = std::make_unique<Pool>();

        // Command buffers are going to be commited, recorded, executed every single usage cycle.
        // They are also going to be reseted when commited.
        const auto pool_flags = vk::CommandPoolCreateFlagBits::eTransient |
                                vk::CommandPoolCreateFlagBits::eResetCommandBuffer;
        const vk::CommandPoolCreateInfo cmdbuf_pool_ci(pool_flags, graphics_family);
        pool->handle = dev.createCommandPoolUnique(cmdbuf_pool_ci, nullptr, dld);

        const vk::CommandBufferAllocateInfo cmdbuf_ai(*pool->handle,
                                                      vk::CommandBufferLevel::ePrimary,
                                                      static_cast<u32>(COMMAND_BUFFER_POOL_SIZE));
        pool->cmdbufs =
            dev.allocateCommandBuffersUnique<std::allocator<UniqueCommandBuffer>>(cmdbuf_ai, dld);

        pools.push_back(std::move(pool));
    }

    vk::CommandBuffer Commit(VKFence& fence) {
        const std::size_t index = CommitResource(fence);
        const auto pool_index = index / COMMAND_BUFFER_POOL_SIZE;
        const auto sub_index = index % COMMAND_BUFFER_POOL_SIZE;
        return *pools[pool_index]->cmdbufs[sub_index];
    }

private:
    struct Pool {
        UniqueCommandPool handle;
        std::vector<UniqueCommandBuffer> cmdbufs;
    };

    const VKDevice& device;

    std::vector<std::unique_ptr<Pool>> pools;
};

VKResource::VKResource() = default;

VKResource::~VKResource() = default;

VKFence::VKFence(const VKDevice& device, UniqueFence handle)
    : device{device}, handle{std::move(handle)} {}

VKFence::~VKFence() = default;

void VKFence::Wait() {
    static constexpr u64 timeout = std::numeric_limits<u64>::max();
    const auto dev = device.GetLogical();
    const auto& dld = device.GetDispatchLoader();
    switch (const auto result = dev.waitForFences(1, &*handle, true, timeout, dld)) {
    case vk::Result::eSuccess:
        return;
    case vk::Result::eErrorDeviceLost:
        device.ReportLoss();
        [[fallthrough]];
    default:
        vk::throwResultException(result, "vk::waitForFences");
    }
}

void VKFence::Release() {
    ASSERT(is_owned);
    is_owned = false;
}

void VKFence::Commit() {
    is_owned = true;
    is_used = true;
}

bool VKFence::Tick(bool gpu_wait, bool owner_wait) {
    if (!is_used) {
        // If a fence is not used it's always free.
        return true;
    }
    if (is_owned && !owner_wait) {
        // The fence is still being owned (Release has not been called) and ownership wait has
        // not been asked.
        return false;
    }

    const auto dev = device.GetLogical();
    const auto& dld = device.GetDispatchLoader();
    if (gpu_wait) {
        // Wait for the fence if it has been requested.
        dev.waitForFences({*handle}, true, std::numeric_limits<u64>::max(), dld);
    } else {
        if (dev.getFenceStatus(*handle, dld) != vk::Result::eSuccess) {
            // Vulkan fence is not ready, not much it can do here
            return false;
        }
    }

    // Broadcast resources their free state.
    for (auto* resource : protected_resources) {
        resource->OnFenceRemoval(this);
    }
    protected_resources.clear();

    // Prepare fence for reusage.
    dev.resetFences({*handle}, dld);
    is_used = false;
    return true;
}

void VKFence::Protect(VKResource* resource) {
    protected_resources.push_back(resource);
}

void VKFence::Unprotect(VKResource* resource) {
    const auto it = std::find(protected_resources.begin(), protected_resources.end(), resource);
    ASSERT(it != protected_resources.end());

    resource->OnFenceRemoval(this);
    protected_resources.erase(it);
}

void VKFence::RedirectProtection(VKResource* old_resource, VKResource* new_resource) noexcept {
    std::replace(std::begin(protected_resources), std::end(protected_resources), old_resource,
                 new_resource);
}

VKFenceWatch::VKFenceWatch() = default;

VKFenceWatch::VKFenceWatch(VKFence& initial_fence) {
    Watch(initial_fence);
}

VKFenceWatch::VKFenceWatch(VKFenceWatch&& rhs) noexcept {
    fence = std::exchange(rhs.fence, nullptr);
    if (fence) {
        fence->RedirectProtection(&rhs, this);
    }
}

VKFenceWatch& VKFenceWatch::operator=(VKFenceWatch&& rhs) noexcept {
    fence = std::exchange(rhs.fence, nullptr);
    if (fence) {
        fence->RedirectProtection(&rhs, this);
    }
    return *this;
}

VKFenceWatch::~VKFenceWatch() {
    if (fence) {
        fence->Unprotect(this);
    }
}

void VKFenceWatch::Wait() {
    if (fence == nullptr) {
        return;
    }
    fence->Wait();
    fence->Unprotect(this);
}

void VKFenceWatch::Watch(VKFence& new_fence) {
    Wait();
    fence = &new_fence;
    fence->Protect(this);
}

bool VKFenceWatch::TryWatch(VKFence& new_fence) {
    if (fence) {
        return false;
    }
    fence = &new_fence;
    fence->Protect(this);
    return true;
}

void VKFenceWatch::OnFenceRemoval(VKFence* signaling_fence) {
    ASSERT_MSG(signaling_fence == fence, "Removing the wrong fence");
    fence = nullptr;
}

VKFencedPool::VKFencedPool(std::size_t grow_step) : grow_step{grow_step} {}

VKFencedPool::~VKFencedPool() = default;

std::size_t VKFencedPool::CommitResource(VKFence& fence) {
    const auto Search = [&](std::size_t begin, std::size_t end) -> std::optional<std::size_t> {
        for (std::size_t iterator = begin; iterator < end; ++iterator) {
            if (watches[iterator]->TryWatch(fence)) {
                // The resource is now being watched, a free resource was successfully found.
                return iterator;
            }
        }
        return {};
    };
    // Try to find a free resource from the hinted position to the end.
    auto found = Search(free_iterator, watches.size());
    if (!found) {
        // Search from beginning to the hinted position.
        found = Search(0, free_iterator);
        if (!found) {
            // Both searches failed, the pool is full; handle it.
            const std::size_t free_resource = ManageOverflow();

            // Watch will wait for the resource to be free.
            watches[free_resource]->Watch(fence);
            found = free_resource;
        }
    }
    // Free iterator is hinted to the resource after the one that's been commited.
    free_iterator = (*found + 1) % watches.size();
    return *found;
}

std::size_t VKFencedPool::ManageOverflow() {
    const std::size_t old_capacity = watches.size();
    Grow();

    // The last entry is guaranted to be free, since it's the first element of the freshly
    // allocated resources.
    return old_capacity;
}

void VKFencedPool::Grow() {
    const std::size_t old_capacity = watches.size();
    watches.resize(old_capacity + grow_step);
    std::generate(watches.begin() + old_capacity, watches.end(),
                  []() { return std::make_unique<VKFenceWatch>(); });
    Allocate(old_capacity, old_capacity + grow_step);
}

VKResourceManager::VKResourceManager(const VKDevice& device) : device{device} {
    GrowFences(FENCES_GROW_STEP);
    command_buffer_pool = std::make_unique<CommandBufferPool>(device);
}

VKResourceManager::~VKResourceManager() = default;

VKFence& VKResourceManager::CommitFence() {
    const auto StepFences = [&](bool gpu_wait, bool owner_wait) -> VKFence* {
        const auto Tick = [=](auto& fence) { return fence->Tick(gpu_wait, owner_wait); };
        const auto hinted = fences.begin() + fences_iterator;

        auto it = std::find_if(hinted, fences.end(), Tick);
        if (it == fences.end()) {
            it = std::find_if(fences.begin(), hinted, Tick);
            if (it == hinted) {
                return nullptr;
            }
        }
        fences_iterator = std::distance(fences.begin(), it) + 1;
        if (fences_iterator >= fences.size())
            fences_iterator = 0;

        auto& fence = *it;
        fence->Commit();
        return fence.get();
    };

    VKFence* found_fence = StepFences(false, false);
    if (!found_fence) {
        // Try again, this time waiting.
        found_fence = StepFences(true, false);

        if (!found_fence) {
            // Allocate new fences and try again.
            LOG_INFO(Render_Vulkan, "Allocating new fences {} -> {}", fences.size(),
                     fences.size() + FENCES_GROW_STEP);

            GrowFences(FENCES_GROW_STEP);
            found_fence = StepFences(true, false);
            ASSERT(found_fence != nullptr);
        }
    }
    return *found_fence;
}

vk::CommandBuffer VKResourceManager::CommitCommandBuffer(VKFence& fence) {
    return command_buffer_pool->Commit(fence);
}

void VKResourceManager::GrowFences(std::size_t new_fences_count) {
    const auto dev = device.GetLogical();
    const auto& dld = device.GetDispatchLoader();
    const vk::FenceCreateInfo fence_ci;

    const std::size_t previous_size = fences.size();
    fences.resize(previous_size + new_fences_count);

    std::generate(fences.begin() + previous_size, fences.end(), [&]() {
        return std::make_unique<VKFence>(device, dev.createFenceUnique(fence_ci, nullptr, dld));
    });
}

} // namespace Vulkan