summaryrefslogtreecommitdiffstats
path: root/src/video_core/shader/decode.cpp
blob: 8427837b7eadbbd3044b4c826759372e67bf374b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cstring>
#include <limits>
#include <set>

#include <fmt/format.h>

#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/engines/shader_header.h"
#include "video_core/shader/control_flow.h"
#include "video_core/shader/node_helper.h"
#include "video_core/shader/shader_ir.h"

namespace VideoCommon::Shader {

using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;

namespace {

/**
 * Returns whether the instruction at the specified offset is a 'sched' instruction.
 * Sched instructions always appear before a sequence of 3 instructions.
 */
constexpr bool IsSchedInstruction(u32 offset, u32 main_offset) {
    constexpr u32 SchedPeriod = 4;
    u32 absolute_offset = offset - main_offset;

    return (absolute_offset % SchedPeriod) == 0;
}

void DeduceTextureHandlerSize(VideoCore::GuestDriverProfile& gpu_driver,
                              const std::list<Sampler>& used_samplers) {
    if (gpu_driver.IsTextureHandlerSizeKnown() || used_samplers.size() <= 1) {
        return;
    }
    u32 count{};
    std::vector<u32> bound_offsets;
    for (const auto& sampler : used_samplers) {
        if (sampler.is_bindless) {
            continue;
        }
        ++count;
        bound_offsets.emplace_back(sampler.offset);
    }
    if (count > 1) {
        gpu_driver.DeduceTextureHandlerSize(std::move(bound_offsets));
    }
}

std::optional<u32> TryDeduceSamplerSize(const Sampler& sampler_to_deduce,
                                        VideoCore::GuestDriverProfile& gpu_driver,
                                        const std::list<Sampler>& used_samplers) {
    const u32 base_offset = sampler_to_deduce.offset;
    u32 max_offset{std::numeric_limits<u32>::max()};
    for (const auto& sampler : used_samplers) {
        if (sampler.is_bindless) {
            continue;
        }
        if (sampler.offset > base_offset) {
            max_offset = std::min(sampler.offset, max_offset);
        }
    }
    if (max_offset == std::numeric_limits<u32>::max()) {
        return std::nullopt;
    }
    return ((max_offset - base_offset) * 4) / gpu_driver.GetTextureHandlerSize();
}

} // Anonymous namespace

class ASTDecoder {
public:
    ASTDecoder(ShaderIR& ir) : ir(ir) {}

    void operator()(ASTProgram& ast) {
        ASTNode current = ast.nodes.GetFirst();
        while (current) {
            Visit(current);
            current = current->GetNext();
        }
    }

    void operator()(ASTIfThen& ast) {
        ASTNode current = ast.nodes.GetFirst();
        while (current) {
            Visit(current);
            current = current->GetNext();
        }
    }

    void operator()(ASTIfElse& ast) {
        ASTNode current = ast.nodes.GetFirst();
        while (current) {
            Visit(current);
            current = current->GetNext();
        }
    }

    void operator()(ASTBlockEncoded& ast) {}

    void operator()(ASTBlockDecoded& ast) {}

    void operator()(ASTVarSet& ast) {}

    void operator()(ASTLabel& ast) {}

    void operator()(ASTGoto& ast) {}

    void operator()(ASTDoWhile& ast) {
        ASTNode current = ast.nodes.GetFirst();
        while (current) {
            Visit(current);
            current = current->GetNext();
        }
    }

    void operator()(ASTReturn& ast) {}

    void operator()(ASTBreak& ast) {}

    void Visit(ASTNode& node) {
        std::visit(*this, *node->GetInnerData());
        if (node->IsBlockEncoded()) {
            auto block = std::get_if<ASTBlockEncoded>(node->GetInnerData());
            NodeBlock bb = ir.DecodeRange(block->start, block->end);
            node->TransformBlockEncoded(std::move(bb));
        }
    }

private:
    ShaderIR& ir;
};

void ShaderIR::Decode() {
    std::memcpy(&header, program_code.data(), sizeof(Tegra::Shader::Header));

    decompiled = false;
    auto info = ScanFlow(program_code, main_offset, settings, registry);
    auto& shader_info = *info;
    coverage_begin = shader_info.start;
    coverage_end = shader_info.end;
    switch (shader_info.settings.depth) {
    case CompileDepth::FlowStack: {
        for (const auto& block : shader_info.blocks) {
            basic_blocks.insert({block.start, DecodeRange(block.start, block.end + 1)});
        }
        break;
    }
    case CompileDepth::NoFlowStack: {
        disable_flow_stack = true;
        const auto insert_block = [this](NodeBlock& nodes, u32 label) {
            if (label == static_cast<u32>(exit_branch)) {
                return;
            }
            basic_blocks.insert({label, nodes});
        };
        const auto& blocks = shader_info.blocks;
        NodeBlock current_block;
        u32 current_label = static_cast<u32>(exit_branch);
        for (auto& block : blocks) {
            if (shader_info.labels.count(block.start) != 0) {
                insert_block(current_block, current_label);
                current_block.clear();
                current_label = block.start;
            }
            if (!block.ignore_branch) {
                DecodeRangeInner(current_block, block.start, block.end);
                InsertControlFlow(current_block, block);
            } else {
                DecodeRangeInner(current_block, block.start, block.end + 1);
            }
        }
        insert_block(current_block, current_label);
        break;
    }
    case CompileDepth::DecompileBackwards:
    case CompileDepth::FullDecompile: {
        program_manager = std::move(shader_info.manager);
        disable_flow_stack = true;
        decompiled = true;
        ASTDecoder decoder{*this};
        ASTNode program = GetASTProgram();
        decoder.Visit(program);
        break;
    }
    default:
        LOG_CRITICAL(HW_GPU, "Unknown decompilation mode!");
        [[fallthrough]];
    case CompileDepth::BruteForce: {
        const auto shader_end = static_cast<u32>(program_code.size());
        coverage_begin = main_offset;
        coverage_end = shader_end;
        for (u32 label = main_offset; label < shader_end; ++label) {
            basic_blocks.insert({label, DecodeRange(label, label + 1)});
        }
        break;
    }
    }
    if (settings.depth != shader_info.settings.depth) {
        LOG_WARNING(
            HW_GPU, "Decompiling to this setting \"{}\" failed, downgrading to this setting \"{}\"",
            CompileDepthAsString(settings.depth), CompileDepthAsString(shader_info.settings.depth));
    }
}

NodeBlock ShaderIR::DecodeRange(u32 begin, u32 end) {
    NodeBlock basic_block;
    DecodeRangeInner(basic_block, begin, end);
    return basic_block;
}

void ShaderIR::DecodeRangeInner(NodeBlock& bb, u32 begin, u32 end) {
    for (u32 pc = begin; pc < (begin > end ? MAX_PROGRAM_LENGTH : end);) {
        pc = DecodeInstr(bb, pc);
    }
}

void ShaderIR::InsertControlFlow(NodeBlock& bb, const ShaderBlock& block) {
    const auto apply_conditions = [&](const Condition& cond, Node n) -> Node {
        Node result = n;
        if (cond.cc != ConditionCode::T) {
            result = Conditional(GetConditionCode(cond.cc), {result});
        }
        if (cond.predicate != Pred::UnusedIndex) {
            u32 pred = static_cast<u32>(cond.predicate);
            const bool is_neg = pred > 7;
            if (is_neg) {
                pred -= 8;
            }
            result = Conditional(GetPredicate(pred, is_neg), {result});
        }
        return result;
    };
    if (std::holds_alternative<SingleBranch>(*block.branch)) {
        auto branch = std::get_if<SingleBranch>(block.branch.get());
        if (branch->address < 0) {
            if (branch->kill) {
                Node n = Operation(OperationCode::Discard);
                n = apply_conditions(branch->condition, n);
                bb.push_back(n);
                global_code.push_back(n);
                return;
            }
            Node n = Operation(OperationCode::Exit);
            n = apply_conditions(branch->condition, n);
            bb.push_back(n);
            global_code.push_back(n);
            return;
        }
        Node n = Operation(OperationCode::Branch, Immediate(branch->address));
        n = apply_conditions(branch->condition, n);
        bb.push_back(n);
        global_code.push_back(n);
        return;
    }
    auto multi_branch = std::get_if<MultiBranch>(block.branch.get());
    Node op_a = GetRegister(multi_branch->gpr);
    for (auto& branch_case : multi_branch->branches) {
        Node n = Operation(OperationCode::Branch, Immediate(branch_case.address));
        Node op_b = Immediate(branch_case.cmp_value);
        Node condition =
            GetPredicateComparisonInteger(Tegra::Shader::PredCondition::Equal, false, op_a, op_b);
        auto result = Conditional(condition, {n});
        bb.push_back(result);
        global_code.push_back(result);
    }
}

u32 ShaderIR::DecodeInstr(NodeBlock& bb, u32 pc) {
    // Ignore sched instructions when generating code.
    if (IsSchedInstruction(pc, main_offset)) {
        return pc + 1;
    }

    const Instruction instr = {program_code[pc]};
    const auto opcode = OpCode::Decode(instr);
    const u32 nv_address = ConvertAddressToNvidiaSpace(pc);

    // Decoding failure
    if (!opcode) {
        UNIMPLEMENTED_MSG("Unhandled instruction: {0:x}", instr.value);
        bb.push_back(Comment(fmt::format("{:05x} Unimplemented Shader instruction (0x{:016x})",
                                         nv_address, instr.value)));
        return pc + 1;
    }

    bb.push_back(Comment(
        fmt::format("{:05x} {} (0x{:016x})", nv_address, opcode->get().GetName(), instr.value)));

    using Tegra::Shader::Pred;
    UNIMPLEMENTED_IF_MSG(instr.pred.full_pred == Pred::NeverExecute,
                         "NeverExecute predicate not implemented");

    static const std::map<OpCode::Type, u32 (ShaderIR::*)(NodeBlock&, u32)> decoders = {
        {OpCode::Type::Arithmetic, &ShaderIR::DecodeArithmetic},
        {OpCode::Type::ArithmeticImmediate, &ShaderIR::DecodeArithmeticImmediate},
        {OpCode::Type::Bfe, &ShaderIR::DecodeBfe},
        {OpCode::Type::Bfi, &ShaderIR::DecodeBfi},
        {OpCode::Type::Shift, &ShaderIR::DecodeShift},
        {OpCode::Type::ArithmeticInteger, &ShaderIR::DecodeArithmeticInteger},
        {OpCode::Type::ArithmeticIntegerImmediate, &ShaderIR::DecodeArithmeticIntegerImmediate},
        {OpCode::Type::ArithmeticHalf, &ShaderIR::DecodeArithmeticHalf},
        {OpCode::Type::ArithmeticHalfImmediate, &ShaderIR::DecodeArithmeticHalfImmediate},
        {OpCode::Type::Ffma, &ShaderIR::DecodeFfma},
        {OpCode::Type::Hfma2, &ShaderIR::DecodeHfma2},
        {OpCode::Type::Conversion, &ShaderIR::DecodeConversion},
        {OpCode::Type::Warp, &ShaderIR::DecodeWarp},
        {OpCode::Type::Memory, &ShaderIR::DecodeMemory},
        {OpCode::Type::Texture, &ShaderIR::DecodeTexture},
        {OpCode::Type::Image, &ShaderIR::DecodeImage},
        {OpCode::Type::FloatSetPredicate, &ShaderIR::DecodeFloatSetPredicate},
        {OpCode::Type::IntegerSetPredicate, &ShaderIR::DecodeIntegerSetPredicate},
        {OpCode::Type::HalfSetPredicate, &ShaderIR::DecodeHalfSetPredicate},
        {OpCode::Type::PredicateSetRegister, &ShaderIR::DecodePredicateSetRegister},
        {OpCode::Type::PredicateSetPredicate, &ShaderIR::DecodePredicateSetPredicate},
        {OpCode::Type::RegisterSetPredicate, &ShaderIR::DecodeRegisterSetPredicate},
        {OpCode::Type::FloatSet, &ShaderIR::DecodeFloatSet},
        {OpCode::Type::IntegerSet, &ShaderIR::DecodeIntegerSet},
        {OpCode::Type::HalfSet, &ShaderIR::DecodeHalfSet},
        {OpCode::Type::Video, &ShaderIR::DecodeVideo},
        {OpCode::Type::Xmad, &ShaderIR::DecodeXmad},
    };

    std::vector<Node> tmp_block;
    if (const auto decoder = decoders.find(opcode->get().GetType()); decoder != decoders.end()) {
        pc = (this->*decoder->second)(tmp_block, pc);
    } else {
        pc = DecodeOther(tmp_block, pc);
    }

    // Some instructions (like SSY) don't have a predicate field, they are always unconditionally
    // executed.
    const bool can_be_predicated = OpCode::IsPredicatedInstruction(opcode->get().GetId());
    const auto pred_index = static_cast<u32>(instr.pred.pred_index);

    if (can_be_predicated && pred_index != static_cast<u32>(Pred::UnusedIndex)) {
        const Node conditional =
            Conditional(GetPredicate(pred_index, instr.negate_pred != 0), std::move(tmp_block));
        global_code.push_back(conditional);
        bb.push_back(conditional);
    } else {
        for (auto& node : tmp_block) {
            global_code.push_back(node);
            bb.push_back(node);
        }
    }

    return pc + 1;
}

void ShaderIR::PostDecode() {
    // Deduce texture handler size if needed
    auto gpu_driver = registry.AccessGuestDriverProfile();
    DeduceTextureHandlerSize(gpu_driver, used_samplers);
    // Deduce Indexed Samplers
    if (!uses_indexed_samplers) {
        return;
    }
    for (auto& sampler : used_samplers) {
        if (!sampler.is_indexed) {
            continue;
        }
        if (const auto size = TryDeduceSamplerSize(sampler, gpu_driver, used_samplers)) {
            sampler.size = *size;
        } else {
            LOG_CRITICAL(HW_GPU, "Failed to deduce size of indexed sampler");
            sampler.size = 1;
        }
    }
}

} // namespace VideoCommon::Shader