summaryrefslogtreecommitdiffstats
path: root/src/video_core/swrasterizer/proctex.cpp
blob: b69892778b253fc195db6b408bf9d754684421f0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <array>
#include <cmath>
#include "common/math_util.h"
#include "video_core/swrasterizer/proctex.h"

namespace Pica {
namespace Rasterizer {

using ProcTexClamp = TexturingRegs::ProcTexClamp;
using ProcTexShift = TexturingRegs::ProcTexShift;
using ProcTexCombiner = TexturingRegs::ProcTexCombiner;
using ProcTexFilter = TexturingRegs::ProcTexFilter;

static float LookupLUT(const std::array<State::ProcTex::ValueEntry, 128>& lut, float coord) {
    // For NoiseLUT/ColorMap/AlphaMap, coord=0.0 is lut[0], coord=127.0/128.0 is lut[127] and
    // coord=1.0 is lut[127]+lut_diff[127]. For other indices, the result is interpolated using
    // value entries and difference entries.
    coord *= 128;
    const int index_int = std::min(static_cast<int>(coord), 127);
    const float frac = coord - index_int;
    return lut[index_int].ToFloat() + frac * lut[index_int].DiffToFloat();
}

// These function are used to generate random noise for procedural texture. Their results are
// verified against real hardware, but it's not known if the algorithm is the same as hardware.
static unsigned int NoiseRand1D(unsigned int v) {
    static constexpr std::array<unsigned int, 16> table{
        {0, 4, 10, 8, 4, 9, 7, 12, 5, 15, 13, 14, 11, 15, 2, 11}};
    return ((v % 9 + 2) * 3 & 0xF) ^ table[(v / 9) & 0xF];
}

static float NoiseRand2D(unsigned int x, unsigned int y) {
    static constexpr std::array<unsigned int, 16> table{
        {10, 2, 15, 8, 0, 7, 4, 5, 5, 13, 2, 6, 13, 9, 3, 14}};
    unsigned int u2 = NoiseRand1D(x);
    unsigned int v2 = NoiseRand1D(y);
    v2 += ((u2 & 3) == 1) ? 4 : 0;
    v2 ^= (u2 & 1) * 6;
    v2 += 10 + u2;
    v2 &= 0xF;
    v2 ^= table[u2];
    return -1.0f + v2 * 2.0f / 15.0f;
}

static float NoiseCoef(float u, float v, TexturingRegs regs, State::ProcTex state) {
    const float freq_u = float16::FromRaw(regs.proctex_noise_frequency.u).ToFloat32();
    const float freq_v = float16::FromRaw(regs.proctex_noise_frequency.v).ToFloat32();
    const float phase_u = float16::FromRaw(regs.proctex_noise_u.phase).ToFloat32();
    const float phase_v = float16::FromRaw(regs.proctex_noise_v.phase).ToFloat32();
    const float x = 9 * freq_u * std::abs(u + phase_u);
    const float y = 9 * freq_v * std::abs(v + phase_v);
    const int x_int = static_cast<int>(x);
    const int y_int = static_cast<int>(y);
    const float x_frac = x - x_int;
    const float y_frac = y - y_int;

    const float g0 = NoiseRand2D(x_int, y_int) * (x_frac + y_frac);
    const float g1 = NoiseRand2D(x_int + 1, y_int) * (x_frac + y_frac - 1);
    const float g2 = NoiseRand2D(x_int, y_int + 1) * (x_frac + y_frac - 1);
    const float g3 = NoiseRand2D(x_int + 1, y_int + 1) * (x_frac + y_frac - 2);
    const float x_noise = LookupLUT(state.noise_table, x_frac);
    const float y_noise = LookupLUT(state.noise_table, y_frac);
    return Math::BilinearInterp(g0, g1, g2, g3, x_noise, y_noise);
}

static float GetShiftOffset(float v, ProcTexShift mode, ProcTexClamp clamp_mode) {
    const float offset = (clamp_mode == ProcTexClamp::MirroredRepeat) ? 1 : 0.5f;
    switch (mode) {
    case ProcTexShift::None:
        return 0;
    case ProcTexShift::Odd:
        return offset * (((int)v / 2) % 2);
    case ProcTexShift::Even:
        return offset * ((((int)v + 1) / 2) % 2);
    default:
        LOG_CRITICAL(HW_GPU, "Unknown shift mode %u", static_cast<u32>(mode));
        return 0;
    }
};

static void ClampCoord(float& coord, ProcTexClamp mode) {
    switch (mode) {
    case ProcTexClamp::ToZero:
        if (coord > 1.0f)
            coord = 0.0f;
        break;
    case ProcTexClamp::ToEdge:
        coord = std::min(coord, 1.0f);
        break;
    case ProcTexClamp::SymmetricalRepeat:
        coord = coord - std::floor(coord);
        break;
    case ProcTexClamp::MirroredRepeat: {
        int integer = static_cast<int>(coord);
        float frac = coord - integer;
        coord = (integer % 2) == 0 ? frac : (1.0f - frac);
        break;
    }
    case ProcTexClamp::Pulse:
        if (coord <= 0.5f)
            coord = 0.0f;
        else
            coord = 1.0f;
        break;
    default:
        LOG_CRITICAL(HW_GPU, "Unknown clamp mode %u", static_cast<u32>(mode));
        coord = std::min(coord, 1.0f);
        break;
    }
}

float CombineAndMap(float u, float v, ProcTexCombiner combiner,
                    const std::array<State::ProcTex::ValueEntry, 128>& map_table) {
    float f;
    switch (combiner) {
    case ProcTexCombiner::U:
        f = u;
        break;
    case ProcTexCombiner::U2:
        f = u * u;
        break;
    case TexturingRegs::ProcTexCombiner::V:
        f = v;
        break;
    case TexturingRegs::ProcTexCombiner::V2:
        f = v * v;
        break;
    case TexturingRegs::ProcTexCombiner::Add:
        f = (u + v) * 0.5f;
        break;
    case TexturingRegs::ProcTexCombiner::Add2:
        f = (u * u + v * v) * 0.5f;
        break;
    case TexturingRegs::ProcTexCombiner::SqrtAdd2:
        f = std::min(std::sqrt(u * u + v * v), 1.0f);
        break;
    case TexturingRegs::ProcTexCombiner::Min:
        f = std::min(u, v);
        break;
    case TexturingRegs::ProcTexCombiner::Max:
        f = std::max(u, v);
        break;
    case TexturingRegs::ProcTexCombiner::RMax:
        f = std::min(((u + v) * 0.5f + std::sqrt(u * u + v * v)) * 0.5f, 1.0f);
        break;
    default:
        LOG_CRITICAL(HW_GPU, "Unknown combiner %u", static_cast<u32>(combiner));
        f = 0.0f;
        break;
    }
    return LookupLUT(map_table, f);
}

Math::Vec4<u8> ProcTex(float u, float v, TexturingRegs regs, State::ProcTex state) {
    u = std::abs(u);
    v = std::abs(v);

    // Get shift offset before noise generation
    const float u_shift = GetShiftOffset(v, regs.proctex.u_shift, regs.proctex.u_clamp);
    const float v_shift = GetShiftOffset(u, regs.proctex.v_shift, regs.proctex.v_clamp);

    // Generate noise
    if (regs.proctex.noise_enable) {
        float noise = NoiseCoef(u, v, regs, state);
        u += noise * regs.proctex_noise_u.amplitude / 4095.0f;
        v += noise * regs.proctex_noise_v.amplitude / 4095.0f;
        u = std::abs(u);
        v = std::abs(v);
    }

    // Shift
    u += u_shift;
    v += v_shift;

    // Clamp
    ClampCoord(u, regs.proctex.u_clamp);
    ClampCoord(v, regs.proctex.v_clamp);

    // Combine and map
    const float lut_coord = CombineAndMap(u, v, regs.proctex.color_combiner, state.color_map_table);

    // Look up the color
    // For the color lut, coord=0.0 is lut[offset] and coord=1.0 is lut[offset+width-1]
    const u32 offset = regs.proctex_lut_offset;
    const u32 width = regs.proctex_lut.width;
    const float index = offset + (lut_coord * (width - 1));
    Math::Vec4<u8> final_color;
    // TODO(wwylele): implement mipmap
    switch (regs.proctex_lut.filter) {
    case ProcTexFilter::Linear:
    case ProcTexFilter::LinearMipmapLinear:
    case ProcTexFilter::LinearMipmapNearest: {
        const int index_int = static_cast<int>(index);
        const float frac = index - index_int;
        const auto color_value = state.color_table[index_int].ToVector().Cast<float>();
        const auto color_diff = state.color_diff_table[index_int].ToVector().Cast<float>();
        final_color = (color_value + frac * color_diff).Cast<u8>();
        break;
    }
    case ProcTexFilter::Nearest:
    case ProcTexFilter::NearestMipmapLinear:
    case ProcTexFilter::NearestMipmapNearest:
        final_color = state.color_table[static_cast<int>(std::round(index))].ToVector();
        break;
    }

    if (regs.proctex.separate_alpha) {
        // Note: in separate alpha mode, the alpha channel skips the color LUT look up stage. It
        // uses the output of CombineAndMap directly instead.
        const float final_alpha =
            CombineAndMap(u, v, regs.proctex.alpha_combiner, state.alpha_map_table);
        return Math::MakeVec<u8>(final_color.rgb(), static_cast<u8>(final_alpha * 255));
    } else {
        return final_color;
    }
}

} // namespace Rasterizer
} // namespace Pica