summaryrefslogtreecommitdiffstats
path: root/src/video_core/textures/decoders.cpp
blob: 0d2456b5688ea616338f8f0326e067959c0e3e67 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cmath>
#include <cstring>
#include "common/alignment.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"

namespace Tegra::Texture {

/**
 * This table represents the internal swizzle of a gob,
 * in format 16 bytes x 2 sector packing.
 * Calculates the offset of an (x, y) position within a swizzled texture.
 * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
 */
template <std::size_t N, std::size_t M, u32 Align>
struct alignas(64) SwizzleTable {
    static_assert(M * Align == 64, "Swizzle Table does not align to GOB");
    constexpr SwizzleTable() {
        for (u32 y = 0; y < N; ++y) {
            for (u32 x = 0; x < M; ++x) {
                const u32 x2 = x * Align;
                values[y][x] = static_cast<u16>(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
                                                ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16));
            }
        }
    }
    const std::array<u16, M>& operator[](std::size_t index) const {
        return values[index];
    }
    std::array<std::array<u16, M>, N> values{};
};

constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>();
constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>();

static void LegacySwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                              u8* swizzled_data, u8* unswizzled_data, bool unswizzle,
                              u32 block_height) {
    std::array<u8*, 2> data_ptrs;
    const std::size_t stride = width * bytes_per_pixel;
    const std::size_t gobs_in_x = 64;
    const std::size_t gobs_in_y = 8;
    const std::size_t gobs_size = gobs_in_x * gobs_in_y;
    const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x};
    for (std::size_t y = 0; y < height; ++y) {
        const std::size_t gob_y_address =
            (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs +
            (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size;
        const auto& table = legacy_swizzle_table[y % gobs_in_y];
        for (std::size_t x = 0; x < width; ++x) {
            const std::size_t gob_address =
                gob_y_address + (x * bytes_per_pixel / gobs_in_x) * gobs_size * block_height;
            const std::size_t x2 = x * bytes_per_pixel;
            const std::size_t swizzle_offset = gob_address + table[x2 % gobs_in_x];
            const std::size_t pixel_index = (x + y * width) * out_bytes_per_pixel;

            data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
            data_ptrs[!unswizzle] = unswizzled_data + pixel_index;

            std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel);
        }
    }
}

static void FastSwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                            u8* swizzled_data, u8* unswizzled_data, bool unswizzle,
                            u32 block_height) {
    std::array<u8*, 2> data_ptrs;
    const std::size_t stride{width * bytes_per_pixel};
    const std::size_t gobs_in_x = 64;
    const std::size_t gobs_in_y = 8;
    const std::size_t gobs_size = gobs_in_x * gobs_in_y;
    const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x};
    const std::size_t copy_size{16};
    for (std::size_t y = 0; y < height; ++y) {
        const std::size_t initial_gob =
            (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs +
            (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size;
        const std::size_t pixel_base{y * width * out_bytes_per_pixel};
        const auto& table = fast_swizzle_table[y % gobs_in_y];
        for (std::size_t xb = 0; xb < stride; xb += copy_size) {
            const std::size_t gob_address{initial_gob +
                                          (xb / gobs_in_x) * gobs_size * block_height};
            const std::size_t swizzle_offset{gob_address + table[(xb / 16) % 4]};
            const std::size_t out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
            const std::size_t pixel_index{out_x + pixel_base};
            data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
            data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
            std::memcpy(data_ptrs[0], data_ptrs[1], copy_size);
        }
    }
}

void CopySwizzledData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                      u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) {
    if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) {
        FastSwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data,
                        unswizzled_data, unswizzle, block_height);
    } else {
        LegacySwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data,
                          unswizzled_data, unswizzle, block_height);
    }
}

u32 BytesPerPixel(TextureFormat format) {
    switch (format) {
    case TextureFormat::DXT1:
    case TextureFormat::DXN1:
        // In this case a 'pixel' actually refers to a 4x4 tile.
        return 8;
    case TextureFormat::DXT23:
    case TextureFormat::DXT45:
    case TextureFormat::DXN2:
    case TextureFormat::BC7U:
    case TextureFormat::BC6H_UF16:
    case TextureFormat::BC6H_SF16:
        // In this case a 'pixel' actually refers to a 4x4 tile.
        return 16;
    case TextureFormat::R32_G32_B32:
        return 12;
    case TextureFormat::ASTC_2D_4X4:
    case TextureFormat::ASTC_2D_8X8:
    case TextureFormat::A8R8G8B8:
    case TextureFormat::A2B10G10R10:
    case TextureFormat::BF10GF11RF11:
    case TextureFormat::R32:
    case TextureFormat::R16_G16:
        return 4;
    case TextureFormat::A1B5G5R5:
    case TextureFormat::B5G6R5:
    case TextureFormat::G8R8:
    case TextureFormat::R16:
        return 2;
    case TextureFormat::R8:
        return 1;
    case TextureFormat::R16_G16_B16_A16:
        return 8;
    case TextureFormat::R32_G32_B32_A32:
        return 16;
    case TextureFormat::R32_G32:
        return 8;
    default:
        UNIMPLEMENTED_MSG("Format not implemented");
        break;
    }
}

std::vector<u8> UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pixel, u32 width,
                                 u32 height, u32 block_height) {
    std::vector<u8> unswizzled_data(width * height * bytes_per_pixel);
    CopySwizzledData(width / tile_size, height / tile_size, bytes_per_pixel, bytes_per_pixel,
                     Memory::GetPointer(address), unswizzled_data.data(), true, block_height);
    return unswizzled_data;
}

std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat format, u32 width,
                              u32 height) {
    std::vector<u8> rgba_data;

    // TODO(Subv): Implement.
    switch (format) {
    case TextureFormat::DXT1:
    case TextureFormat::DXT23:
    case TextureFormat::DXT45:
    case TextureFormat::DXN1:
    case TextureFormat::DXN2:
    case TextureFormat::BC7U:
    case TextureFormat::BC6H_UF16:
    case TextureFormat::BC6H_SF16:
    case TextureFormat::ASTC_2D_4X4:
    case TextureFormat::ASTC_2D_8X8:
    case TextureFormat::A8R8G8B8:
    case TextureFormat::A2B10G10R10:
    case TextureFormat::A1B5G5R5:
    case TextureFormat::B5G6R5:
    case TextureFormat::R8:
    case TextureFormat::G8R8:
    case TextureFormat::BF10GF11RF11:
    case TextureFormat::R32_G32_B32_A32:
    case TextureFormat::R32_G32:
    case TextureFormat::R32:
    case TextureFormat::R16:
    case TextureFormat::R16_G16:
    case TextureFormat::R32_G32_B32:
        // TODO(Subv): For the time being just forward the same data without any decoding.
        rgba_data = texture_data;
        break;
    default:
        UNIMPLEMENTED_MSG("Format not implemented");
        break;
    }

    return rgba_data;
}

std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
                          u32 block_height, u32 block_depth) {
    if (tiled) {
        const u32 gobs_in_x = 64 / bytes_per_pixel;
        const u32 gobs_in_y = 8;
        const u32 gobs_in_z = 1;
        const u32 aligned_width = Common::AlignUp(width, gobs_in_x);
        const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height);
        const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth);
        return aligned_width * aligned_height * aligned_depth * bytes_per_pixel;
    } else {
        return width * height * depth * bytes_per_pixel;
    }
}

} // namespace Tegra::Texture