1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
|
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include <cmath>
#include <cstring>
#include "common/alignment.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"
namespace Tegra::Texture {
/**
* This table represents the internal swizzle of a gob,
* in format 16 bytes x 2 sector packing.
* Calculates the offset of an (x, y) position within a swizzled texture.
* Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
*/
template <std::size_t N, std::size_t M, u32 Align>
struct alignas(64) SwizzleTable {
static_assert(M * Align == 64, "Swizzle Table does not align to GOB");
constexpr SwizzleTable() {
for (u32 y = 0; y < N; ++y) {
for (u32 x = 0; x < M; ++x) {
const u32 x2 = x * Align;
values[y][x] = static_cast<u16>(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16));
}
}
}
const std::array<u16, M>& operator[](std::size_t index) const {
return values[index];
}
std::array<std::array<u16, M>, N> values{};
};
constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>();
constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>();
/**
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
* Instead of going gob by gob, we map the coordinates inside a block and manage from
* those. Block_Width is assumed to be 1.
*/
void PreciseProcessBlock(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle,
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
const u32 y_end, const u32 z_end, const u32 tile_offset,
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
std::array<u8*, 2> data_ptrs;
u32 z_address = tile_offset;
const u32 gob_size_x = 64;
const u32 gob_size_y = 8;
const u32 gob_size_z = 1;
const u32 gob_size = gob_size_x * gob_size_y * gob_size_z;
for (u32 z = z_start; z < z_end; z++) {
u32 y_address = z_address;
u32 pixel_base = layer_z * z + y_start * stride_x;
for (u32 y = y_start; y < y_end; y++) {
const auto& table = legacy_swizzle_table[y % gob_size_y];
for (u32 x = x_start; x < x_end; x++) {
const u32 swizzle_offset{y_address + table[x * bytes_per_pixel % gob_size_x]};
const u32 pixel_index{x * out_bytes_per_pixel + pixel_base};
data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel);
}
pixel_base += stride_x;
if ((y + 1) % gob_size_y == 0)
y_address += gob_size;
}
z_address += xy_block_size;
}
}
/**
* This function manages ALL the GOBs(Group of Bytes) Inside a single block.
* Instead of going gob by gob, we map the coordinates inside a block and manage from
* those. Block_Width is assumed to be 1.
*/
void FastProcessBlock(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle,
const u32 x_start, const u32 y_start, const u32 z_start, const u32 x_end,
const u32 y_end, const u32 z_end, const u32 tile_offset,
const u32 xy_block_size, const u32 layer_z, const u32 stride_x,
const u32 bytes_per_pixel, const u32 out_bytes_per_pixel) {
std::array<u8*, 2> data_ptrs;
u32 z_address = tile_offset;
const u32 x_startb = x_start * bytes_per_pixel;
const u32 x_endb = x_end * bytes_per_pixel;
const u32 copy_size = 16;
const u32 gob_size_x = 64;
const u32 gob_size_y = 8;
const u32 gob_size_z = 1;
const u32 gob_size = gob_size_x * gob_size_y * gob_size_z;
for (u32 z = z_start; z < z_end; z++) {
u32 y_address = z_address;
u32 pixel_base = layer_z * z + y_start * stride_x;
for (u32 y = y_start; y < y_end; y++) {
const auto& table = fast_swizzle_table[y % gob_size_y];
for (u32 xb = x_startb; xb < x_endb; xb += copy_size) {
const u32 swizzle_offset{y_address + table[(xb / copy_size) % 4]};
const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
const u32 pixel_index{out_x + pixel_base};
data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
std::memcpy(data_ptrs[0], data_ptrs[1], copy_size);
}
pixel_base += stride_x;
if ((y + 1) % gob_size_y == 0)
y_address += gob_size;
}
z_address += xy_block_size;
}
}
/**
* This function unswizzles or swizzles a texture by mapping Linear to BlockLinear Textue.
* The body of this function takes care of splitting the swizzled texture into blocks,
* and managing the extents of it. Once all the parameters of a single block are obtained,
* the function calls 'ProcessBlock' to process that particular Block.
*
* Documentation for the memory layout and decoding can be found at:
* https://envytools.readthedocs.io/en/latest/hw/memory/g80-surface.html#blocklinear-surfaces
*/
template <bool fast>
void SwizzledData(u8* swizzled_data, u8* unswizzled_data, const bool unswizzle, const u32 width,
const u32 height, const u32 depth, const u32 bytes_per_pixel,
const u32 out_bytes_per_pixel, const u32 block_height, const u32 block_depth) {
auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
const u32 stride_x = width * out_bytes_per_pixel;
const u32 layer_z = height * stride_x;
const u32 gob_x_bytes = 64;
const u32 gob_elements_x = gob_x_bytes / bytes_per_pixel;
const u32 gob_elements_y = 8;
const u32 gob_elements_z = 1;
const u32 block_x_elements = gob_elements_x;
const u32 block_y_elements = gob_elements_y * block_height;
const u32 block_z_elements = gob_elements_z * block_depth;
const u32 blocks_on_x = div_ceil(width, block_x_elements);
const u32 blocks_on_y = div_ceil(height, block_y_elements);
const u32 blocks_on_z = div_ceil(depth, block_z_elements);
const u32 gob_size = gob_x_bytes * gob_elements_y * gob_elements_z;
const u32 xy_block_size = gob_size * block_height;
const u32 block_size = xy_block_size * block_depth;
u32 tile_offset = 0;
for (u32 zb = 0; zb < blocks_on_z; zb++) {
const u32 z_start = zb * block_z_elements;
const u32 z_end = std::min(depth, z_start + block_z_elements);
for (u32 yb = 0; yb < blocks_on_y; yb++) {
const u32 y_start = yb * block_y_elements;
const u32 y_end = std::min(height, y_start + block_y_elements);
for (u32 xb = 0; xb < blocks_on_x; xb++) {
const u32 x_start = xb * block_x_elements;
const u32 x_end = std::min(width, x_start + block_x_elements);
if (fast) {
FastProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
} else {
PreciseProcessBlock(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
z_start, x_end, y_end, z_end, tile_offset, xy_block_size,
layer_z, stride_x, bytes_per_pixel, out_bytes_per_pixel);
}
tile_offset += block_size;
}
}
}
}
void CopySwizzledData(u32 width, u32 height, u32 depth, u32 bytes_per_pixel,
u32 out_bytes_per_pixel, u8* swizzled_data, u8* unswizzled_data,
bool unswizzle, u32 block_height, u32 block_depth) {
if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) {
SwizzledData<true>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth);
} else {
SwizzledData<false>(swizzled_data, unswizzled_data, unswizzle, width, height, depth,
bytes_per_pixel, out_bytes_per_pixel, block_height, block_depth);
}
}
u32 BytesPerPixel(TextureFormat format) {
switch (format) {
case TextureFormat::DXT1:
case TextureFormat::DXN1:
// In this case a 'pixel' actually refers to a 4x4 tile.
return 8;
case TextureFormat::DXT23:
case TextureFormat::DXT45:
case TextureFormat::DXN2:
case TextureFormat::BC7U:
case TextureFormat::BC6H_UF16:
case TextureFormat::BC6H_SF16:
// In this case a 'pixel' actually refers to a 4x4 tile.
return 16;
case TextureFormat::R32_G32_B32:
return 12;
case TextureFormat::ASTC_2D_4X4:
case TextureFormat::ASTC_2D_5X4:
case TextureFormat::ASTC_2D_8X8:
case TextureFormat::ASTC_2D_8X5:
case TextureFormat::A8R8G8B8:
case TextureFormat::A2B10G10R10:
case TextureFormat::BF10GF11RF11:
case TextureFormat::R32:
case TextureFormat::R16_G16:
return 4;
case TextureFormat::A1B5G5R5:
case TextureFormat::B5G6R5:
case TextureFormat::G8R8:
case TextureFormat::R16:
return 2;
case TextureFormat::R8:
return 1;
case TextureFormat::R16_G16_B16_A16:
return 8;
case TextureFormat::R32_G32_B32_A32:
return 16;
case TextureFormat::R32_G32:
return 8;
default:
UNIMPLEMENTED_MSG("Format not implemented");
break;
}
}
std::vector<u8> UnswizzleTexture(VAddr address, u32 tile_size_x, u32 tile_size_y,
u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth) {
std::vector<u8> unswizzled_data(width * height * depth * bytes_per_pixel);
CopySwizzledData((width + tile_size_x - 1) / tile_size_x,
(height + tile_size_y - 1) / tile_size_y, depth, bytes_per_pixel,
bytes_per_pixel, Memory::GetPointer(address), unswizzled_data.data(), true,
block_height, block_depth);
return unswizzled_data;
}
void SwizzleSubrect(u32 subrect_width, u32 subrect_height, u32 source_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height) {
const u32 image_width_in_gobs{(swizzled_width * bytes_per_pixel + 63) / 64};
for (u32 line = 0; line < subrect_height; ++line) {
const u32 gob_address_y =
(line / (8 * block_height)) * 512 * block_height * image_width_in_gobs +
(line % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[line % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 gob_address = gob_address_y + (x * bytes_per_pixel / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[(x * bytes_per_pixel) % 64];
const VAddr source_line = unswizzled_data + line * source_pitch + x * bytes_per_pixel;
const VAddr dest_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_addr, source_line, bytes_per_pixel);
}
}
}
void UnswizzleSubrect(u32 subrect_width, u32 subrect_height, u32 dest_pitch, u32 swizzled_width,
u32 bytes_per_pixel, VAddr swizzled_data, VAddr unswizzled_data,
u32 block_height, u32 offset_x, u32 offset_y) {
for (u32 line = 0; line < subrect_height; ++line) {
const u32 y2 = line + offset_y;
const u32 gob_address_y =
(y2 / (8 * block_height)) * 512 * block_height + (y2 % (8 * block_height) / 8) * 512;
const auto& table = legacy_swizzle_table[y2 % 8];
for (u32 x = 0; x < subrect_width; ++x) {
const u32 x2 = (x + offset_x) * bytes_per_pixel;
const u32 gob_address = gob_address_y + (x2 / 64) * 512 * block_height;
const u32 swizzled_offset = gob_address + table[x2 % 64];
const VAddr dest_line = unswizzled_data + line * dest_pitch + x * bytes_per_pixel;
const VAddr source_addr = swizzled_data + swizzled_offset;
Memory::CopyBlock(dest_line, source_addr, bytes_per_pixel);
}
}
}
std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat format, u32 width,
u32 height) {
std::vector<u8> rgba_data;
// TODO(Subv): Implement.
switch (format) {
case TextureFormat::DXT1:
case TextureFormat::DXT23:
case TextureFormat::DXT45:
case TextureFormat::DXN1:
case TextureFormat::DXN2:
case TextureFormat::BC7U:
case TextureFormat::BC6H_UF16:
case TextureFormat::BC6H_SF16:
case TextureFormat::ASTC_2D_4X4:
case TextureFormat::ASTC_2D_8X8:
case TextureFormat::A8R8G8B8:
case TextureFormat::A2B10G10R10:
case TextureFormat::A1B5G5R5:
case TextureFormat::B5G6R5:
case TextureFormat::R8:
case TextureFormat::G8R8:
case TextureFormat::BF10GF11RF11:
case TextureFormat::R32_G32_B32_A32:
case TextureFormat::R32_G32:
case TextureFormat::R32:
case TextureFormat::R16:
case TextureFormat::R16_G16:
case TextureFormat::R32_G32_B32:
// TODO(Subv): For the time being just forward the same data without any decoding.
rgba_data = texture_data;
break;
default:
UNIMPLEMENTED_MSG("Format not implemented");
break;
}
return rgba_data;
}
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth) {
if (tiled) {
const u32 gobs_in_x = 64;
const u32 gobs_in_y = 8;
const u32 gobs_in_z = 1;
const u32 aligned_width = Common::AlignUp(width * bytes_per_pixel, gobs_in_x);
const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height);
const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth);
return aligned_width * aligned_height * aligned_depth;
} else {
return width * height * depth * bytes_per_pixel;
}
}
} // namespace Tegra::Texture
|