diff options
author | liamwhite <liamwhite@users.noreply.github.com> | 2023-08-21 22:08:51 +0200 |
---|---|---|
committer | GitHub <noreply@github.com> | 2023-08-21 22:08:51 +0200 |
commit | 18c08cee43ea674738897dff1c869e78016fd7a1 (patch) | |
tree | 5192c687b384d7589c9b7e6383bfe05c6a593e10 /src/video_core | |
parent | android: Use sensor landscape for landscape mode (#11337) (diff) | |
parent | flatten color_values (diff) | |
download | yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar.gz yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar.bz2 yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar.lz yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar.xz yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.tar.zst yuzu-18c08cee43ea674738897dff1c869e78016fd7a1.zip |
Diffstat (limited to 'src/video_core')
-rw-r--r-- | src/video_core/host_shaders/astc_decoder.comp | 988 | ||||
-rw-r--r-- | src/video_core/renderer_opengl/util_shaders.cpp | 1 |
2 files changed, 454 insertions, 535 deletions
diff --git a/src/video_core/host_shaders/astc_decoder.comp b/src/video_core/host_shaders/astc_decoder.comp index bf2693559..5ff17cd0c 100644 --- a/src/video_core/host_shaders/astc_decoder.comp +++ b/src/video_core/host_shaders/astc_decoder.comp @@ -33,26 +33,14 @@ UNIFORM(6) uint block_height_mask; END_PUSH_CONSTANTS struct EncodingData { - uint encoding; - uint num_bits; - uint bit_value; - uint quint_trit_value; + uint data; }; -struct TexelWeightParams { - uvec2 size; - uint max_weight; - bool dual_plane; - bool error_state; - bool void_extent_ldr; - bool void_extent_hdr; -}; - -layout(binding = BINDING_INPUT_BUFFER, std430) readonly buffer InputBufferU32 { +layout(binding = BINDING_INPUT_BUFFER, std430) readonly restrict buffer InputBufferU32 { uvec4 astc_data[]; }; -layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly image2DArray dest_image; +layout(binding = BINDING_OUTPUT_IMAGE, rgba8) uniform writeonly restrict image2DArray dest_image; const uint GOB_SIZE_X_SHIFT = 6; const uint GOB_SIZE_Y_SHIFT = 3; @@ -60,64 +48,21 @@ const uint GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT; const uint BYTES_PER_BLOCK_LOG2 = 4; -const int JUST_BITS = 0; -const int QUINT = 1; -const int TRIT = 2; +const uint JUST_BITS = 0u; +const uint QUINT = 1u; +const uint TRIT = 2u; // ASTC Encodings data, sorted in ascending order based on their BitLength value // (see GetBitLength() function) -EncodingData encoding_values[22] = EncodingData[]( - EncodingData(JUST_BITS, 0, 0, 0), EncodingData(JUST_BITS, 1, 0, 0), EncodingData(TRIT, 0, 0, 0), - EncodingData(JUST_BITS, 2, 0, 0), EncodingData(QUINT, 0, 0, 0), EncodingData(TRIT, 1, 0, 0), - EncodingData(JUST_BITS, 3, 0, 0), EncodingData(QUINT, 1, 0, 0), EncodingData(TRIT, 2, 0, 0), - EncodingData(JUST_BITS, 4, 0, 0), EncodingData(QUINT, 2, 0, 0), EncodingData(TRIT, 3, 0, 0), - EncodingData(JUST_BITS, 5, 0, 0), EncodingData(QUINT, 3, 0, 0), EncodingData(TRIT, 4, 0, 0), - EncodingData(JUST_BITS, 6, 0, 0), EncodingData(QUINT, 4, 0, 0), EncodingData(TRIT, 5, 0, 0), - EncodingData(JUST_BITS, 7, 0, 0), EncodingData(QUINT, 5, 0, 0), EncodingData(TRIT, 6, 0, 0), - EncodingData(JUST_BITS, 8, 0, 0) -); - -// The following constants are expanded variants of the Replicate() -// function calls corresponding to the following arguments: -// value: index into the generated table -// num_bits: the after "REPLICATE" in the table name. i.e. 4 is num_bits in REPLICATE_4. -// to_bit: the integer after "TO_" -const uint REPLICATE_BIT_TO_7_TABLE[2] = uint[](0, 127); -const uint REPLICATE_1_BIT_TO_9_TABLE[2] = uint[](0, 511); - -const uint REPLICATE_1_BIT_TO_8_TABLE[2] = uint[](0, 255); -const uint REPLICATE_2_BIT_TO_8_TABLE[4] = uint[](0, 85, 170, 255); -const uint REPLICATE_3_BIT_TO_8_TABLE[8] = uint[](0, 36, 73, 109, 146, 182, 219, 255); -const uint REPLICATE_4_BIT_TO_8_TABLE[16] = - uint[](0, 17, 34, 51, 68, 85, 102, 119, 136, 153, 170, 187, 204, 221, 238, 255); -const uint REPLICATE_5_BIT_TO_8_TABLE[32] = - uint[](0, 8, 16, 24, 33, 41, 49, 57, 66, 74, 82, 90, 99, 107, 115, 123, 132, 140, 148, 156, 165, - 173, 181, 189, 198, 206, 214, 222, 231, 239, 247, 255); -const uint REPLICATE_1_BIT_TO_6_TABLE[2] = uint[](0, 63); -const uint REPLICATE_2_BIT_TO_6_TABLE[4] = uint[](0, 21, 42, 63); -const uint REPLICATE_3_BIT_TO_6_TABLE[8] = uint[](0, 9, 18, 27, 36, 45, 54, 63); -const uint REPLICATE_4_BIT_TO_6_TABLE[16] = - uint[](0, 4, 8, 12, 17, 21, 25, 29, 34, 38, 42, 46, 51, 55, 59, 63); -const uint REPLICATE_5_BIT_TO_6_TABLE[32] = - uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 43, 45, - 47, 49, 51, 53, 55, 57, 59, 61, 63); -const uint REPLICATE_6_BIT_TO_8_TABLE[64] = - uint[](0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 65, 69, 73, 77, 81, 85, 89, - 93, 97, 101, 105, 109, 113, 117, 121, 125, 130, 134, 138, 142, 146, 150, 154, 158, 162, - 166, 170, 174, 178, 182, 186, 190, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, - 239, 243, 247, 251, 255); -const uint REPLICATE_7_BIT_TO_8_TABLE[128] = - uint[](0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, - 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, - 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120, 122, 124, 126, - 129, 131, 133, 135, 137, 139, 141, 143, 145, 147, 149, 151, 153, 155, 157, 159, 161, 163, - 165, 167, 169, 171, 173, 175, 177, 179, 181, 183, 185, 187, 189, 191, 193, 195, 197, 199, - 201, 203, 205, 207, 209, 211, 213, 215, 217, 219, 221, 223, 225, 227, 229, 231, 233, 235, - 237, 239, 241, 243, 245, 247, 249, 251, 253, 255); +const uint encoding_values[22] = uint[]( + (JUST_BITS), (JUST_BITS | (1u << 8u)), (TRIT), (JUST_BITS | (2u << 8u)), + (QUINT), (TRIT | (1u << 8u)), (JUST_BITS | (3u << 8u)), (QUINT | (1u << 8u)), + (TRIT | (2u << 8u)), (JUST_BITS | (4u << 8u)), (QUINT | (2u << 8u)), (TRIT | (3u << 8u)), + (JUST_BITS | (5u << 8u)), (QUINT | (3u << 8u)), (TRIT | (4u << 8u)), (JUST_BITS | (6u << 8u)), + (QUINT | (4u << 8u)), (TRIT | (5u << 8u)), (JUST_BITS | (7u << 8u)), (QUINT | (5u << 8u)), + (TRIT | (6u << 8u)), (JUST_BITS | (8u << 8u))); // Input ASTC texture globals -uint current_index = 0; -int bitsread = 0; int total_bitsread = 0; uvec4 local_buff; @@ -125,50 +70,60 @@ uvec4 local_buff; uvec4 color_endpoint_data; int color_bitsread = 0; -// Four values, two endpoints, four maximum partitions -uint color_values[32]; -int colvals_index = 0; - -// Weight data globals -uvec4 texel_weight_data; -int texel_bitsread = 0; +// Global "vector" to be pushed into when decoding +// At most will require BLOCK_WIDTH x BLOCK_HEIGHT in single plane mode +// At most will require BLOCK_WIDTH x BLOCK_HEIGHT x 2 in dual plane mode +// So the maximum would be 144 (12 x 12) elements, x 2 for two planes +#define DIVCEIL(number, divisor) (number + divisor - 1) / divisor +#define ARRAY_NUM_ELEMENTS 144 +#define VECTOR_ARRAY_SIZE DIVCEIL(ARRAY_NUM_ELEMENTS * 2, 4) +uint result_vector[ARRAY_NUM_ELEMENTS * 2]; -bool texel_flag = false; - -// Global "vectors" to be pushed into when decoding -EncodingData result_vector[144]; int result_index = 0; +uint result_vector_max_index; +bool result_limit_reached = false; -EncodingData texel_vector[144]; -int texel_vector_index = 0; +// EncodingData helpers +uint Encoding(EncodingData val) { + return bitfieldExtract(val.data, 0, 8); +} +uint NumBits(EncodingData val) { + return bitfieldExtract(val.data, 8, 8); +} +uint BitValue(EncodingData val) { + return bitfieldExtract(val.data, 16, 8); +} +uint QuintTritValue(EncodingData val) { + return bitfieldExtract(val.data, 24, 8); +} -uint unquantized_texel_weights[2][144]; +void Encoding(inout EncodingData val, uint v) { + val.data = bitfieldInsert(val.data, v, 0, 8); +} +void NumBits(inout EncodingData val, uint v) { + val.data = bitfieldInsert(val.data, v, 8, 8); +} +void BitValue(inout EncodingData val, uint v) { + val.data = bitfieldInsert(val.data, v, 16, 8); +} +void QuintTritValue(inout EncodingData val, uint v) { + val.data = bitfieldInsert(val.data, v, 24, 8); +} -uint SwizzleOffset(uvec2 pos) { - uint x = pos.x; - uint y = pos.y; - return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 + - (y % 2) * 16 + (x % 16); +EncodingData CreateEncodingData(uint encoding, uint num_bits, uint bit_val, uint quint_trit_val) { + return EncodingData(((encoding) << 0u) | ((num_bits) << 8u) | + ((bit_val) << 16u) | ((quint_trit_val) << 24u)); } -// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)] -// is the same as [(num_bits - 1):0] and repeats all the way down. -uint Replicate(uint val, uint num_bits, uint to_bit) { - const uint v = val & uint((1 << num_bits) - 1); - uint res = v; - uint reslen = num_bits; - while (reslen < to_bit) { - uint comp = 0; - if (num_bits > to_bit - reslen) { - uint newshift = to_bit - reslen; - comp = num_bits - newshift; - num_bits = newshift; - } - res = uint(res << num_bits); - res = uint(res | (v >> comp)); - reslen += num_bits; + +void ResultEmplaceBack(EncodingData val) { + if (result_index >= result_vector_max_index) { + // Alert callers to avoid decoding more than needed by this phase + result_limit_reached = true; + return; } - return res; + result_vector[result_index] = val.data; + ++result_index; } uvec4 ReplicateByteTo16(uvec4 value) { @@ -176,64 +131,40 @@ uvec4 ReplicateByteTo16(uvec4 value) { } uint ReplicateBitTo7(uint value) { - return REPLICATE_BIT_TO_7_TABLE[value]; + return value * 127; } uint ReplicateBitTo9(uint value) { - return REPLICATE_1_BIT_TO_9_TABLE[value]; + return value * 511; } -uint FastReplicate(uint value, uint num_bits, uint to_bit) { - if (num_bits == 0) { +uint ReplicateBits(uint value, uint num_bits, uint to_bit) { + if (value == 0 || num_bits == 0) { return 0; } - if (num_bits == to_bit) { + if (num_bits >= to_bit) { return value; } - if (to_bit == 6) { - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_6_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_6_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_6_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_6_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_6_TABLE[value]; - default: - break; - } - } else { /* if (to_bit == 8) */ - switch (num_bits) { - case 1: - return REPLICATE_1_BIT_TO_8_TABLE[value]; - case 2: - return REPLICATE_2_BIT_TO_8_TABLE[value]; - case 3: - return REPLICATE_3_BIT_TO_8_TABLE[value]; - case 4: - return REPLICATE_4_BIT_TO_8_TABLE[value]; - case 5: - return REPLICATE_5_BIT_TO_8_TABLE[value]; - case 6: - return REPLICATE_6_BIT_TO_8_TABLE[value]; - case 7: - return REPLICATE_7_BIT_TO_8_TABLE[value]; - default: - break; - } + const uint v = value & uint((1 << num_bits) - 1); + uint res = v; + uint reslen = num_bits; + while (reslen < to_bit) { + const uint num_dst_bits_to_shift_up = min(num_bits, to_bit - reslen); + const uint num_src_bits_to_shift_down = num_bits - num_dst_bits_to_shift_up; + + res <<= num_dst_bits_to_shift_up; + res |= (v >> num_src_bits_to_shift_down); + reslen += num_bits; } - return Replicate(value, num_bits, to_bit); + return res; } uint FastReplicateTo8(uint value, uint num_bits) { - return FastReplicate(value, num_bits, 8); + return ReplicateBits(value, num_bits, 8); } uint FastReplicateTo6(uint value, uint num_bits) { - return FastReplicate(value, num_bits, 6); + return ReplicateBits(value, num_bits, 6); } uint Div3Floor(uint v) { @@ -266,15 +197,15 @@ uint Hash52(uint p) { return p; } -uint Select2DPartition(uint seed, uint x, uint y, uint partition_count, bool small_block) { - if (small_block) { +uint Select2DPartition(uint seed, uint x, uint y, uint partition_count) { + if ((block_dims.y * block_dims.x) < 32) { x <<= 1; y <<= 1; } seed += (partition_count - 1) * 1024; - uint rnum = Hash52(uint(seed)); + const uint rnum = Hash52(uint(seed)); uint seed1 = uint(rnum & 0xF); uint seed2 = uint((rnum >> 4) & 0xF); uint seed3 = uint((rnum >> 8) & 0xF); @@ -342,53 +273,52 @@ uint ExtractBits(uvec4 payload, int offset, int bits) { if (bits <= 0) { return 0; } - int last_offset = offset + bits - 1; - int shifted_offset = offset >> 5; + if (bits > 32) { + return 0; + } + const int last_offset = offset + bits - 1; + const int shifted_offset = offset >> 5; if ((last_offset >> 5) == shifted_offset) { return bitfieldExtract(payload[shifted_offset], offset & 31, bits); } - int first_bits = 32 - (offset & 31); - int result_first = int(bitfieldExtract(payload[shifted_offset], offset & 31, first_bits)); - int result_second = int(bitfieldExtract(payload[shifted_offset + 1], 0, bits - first_bits)); + const int first_bits = 32 - (offset & 31); + const int result_first = int(bitfieldExtract(payload[shifted_offset], offset & 31, first_bits)); + const int result_second = int(bitfieldExtract(payload[shifted_offset + 1], 0, bits - first_bits)); return result_first | (result_second << first_bits); } uint StreamBits(uint num_bits) { - int int_bits = int(num_bits); - uint ret = ExtractBits(local_buff, total_bitsread, int_bits); + const int int_bits = int(num_bits); + const uint ret = ExtractBits(local_buff, total_bitsread, int_bits); total_bitsread += int_bits; return ret; } +void SkipBits(uint num_bits) { + const int int_bits = int(num_bits); + total_bitsread += int_bits; +} + uint StreamColorBits(uint num_bits) { - uint ret = 0; - int int_bits = int(num_bits); - if (texel_flag) { - ret = ExtractBits(texel_weight_data, texel_bitsread, int_bits); - texel_bitsread += int_bits; - } else { - ret = ExtractBits(color_endpoint_data, color_bitsread, int_bits); - color_bitsread += int_bits; - } + const int int_bits = int(num_bits); + const uint ret = ExtractBits(color_endpoint_data, color_bitsread, int_bits); + color_bitsread += int_bits; return ret; } -void ResultEmplaceBack(EncodingData val) { - if (texel_flag) { - texel_vector[texel_vector_index] = val; - ++texel_vector_index; - } else { - result_vector[result_index] = val; - ++result_index; - } +EncodingData GetEncodingFromVector(uint index) { + const uint data = result_vector[index]; + return EncodingData(data); } // Returns the number of bits required to encode n_vals values. uint GetBitLength(uint n_vals, uint encoding_index) { - uint total_bits = encoding_values[encoding_index].num_bits * n_vals; - if (encoding_values[encoding_index].encoding == TRIT) { + const EncodingData encoding_value = EncodingData(encoding_values[encoding_index]); + const uint encoding = Encoding(encoding_value); + uint total_bits = NumBits(encoding_value) * n_vals; + if (encoding == TRIT) { total_bits += Div5Ceil(n_vals * 8); - } else if (encoding_values[encoding_index].encoding == QUINT) { + } else if (encoding == QUINT) { total_bits += Div3Ceil(n_vals * 7); } return total_bits; @@ -403,7 +333,7 @@ uint GetNumWeightValues(uvec2 size, bool dual_plane) { } uint GetPackedBitSize(uvec2 size, bool dual_plane, uint max_weight) { - uint n_vals = GetNumWeightValues(size, dual_plane); + const uint n_vals = GetNumWeightValues(size, dual_plane); return GetBitLength(n_vals, max_weight); } @@ -412,87 +342,74 @@ uint BitsBracket(uint bits, uint pos) { } uint BitsOp(uint bits, uint start, uint end) { - if (start == end) { - return BitsBracket(bits, start); - } else if (start > end) { - uint t = start; - start = end; - end = t; - } - - uint mask = (1 << (end - start + 1)) - 1; + const uint mask = (1 << (end - start + 1)) - 1; return ((bits >> start) & mask); } void DecodeQuintBlock(uint num_bits) { - uint m[3]; - uint q[3]; - uint Q; + uvec3 m; + uvec4 qQ; m[0] = StreamColorBits(num_bits); - Q = StreamColorBits(3); + qQ.w = StreamColorBits(3); m[1] = StreamColorBits(num_bits); - Q |= StreamColorBits(2) << 3; + qQ.w |= StreamColorBits(2) << 3; m[2] = StreamColorBits(num_bits); - Q |= StreamColorBits(2) << 5; - if (BitsOp(Q, 1, 2) == 3 && BitsOp(Q, 5, 6) == 0) { - q[0] = 4; - q[1] = 4; - q[2] = (BitsBracket(Q, 0) << 2) | ((BitsBracket(Q, 4) & ~BitsBracket(Q, 0)) << 1) | - (BitsBracket(Q, 3) & ~BitsBracket(Q, 0)); + qQ.w |= StreamColorBits(2) << 5; + if (BitsOp(qQ.w, 1, 2) == 3 && BitsOp(qQ.w, 5, 6) == 0) { + qQ.x = 4; + qQ.y = 4; + qQ.z = (BitsBracket(qQ.w, 0) << 2) | ((BitsBracket(qQ.w, 4) & ~BitsBracket(qQ.w, 0)) << 1) | + (BitsBracket(qQ.w, 3) & ~BitsBracket(qQ.w, 0)); } else { uint C = 0; - if (BitsOp(Q, 1, 2) == 3) { - q[2] = 4; - C = (BitsOp(Q, 3, 4) << 3) | ((~BitsOp(Q, 5, 6) & 3) << 1) | BitsBracket(Q, 0); + if (BitsOp(qQ.w, 1, 2) == 3) { + qQ.z = 4; + C = (BitsOp(qQ.w, 3, 4) << 3) | ((~BitsOp(qQ.w, 5, 6) & 3) << 1) | BitsBracket(qQ.w, 0); } else { - q[2] = BitsOp(Q, 5, 6); - C = BitsOp(Q, 0, 4); + qQ.z = BitsOp(qQ.w, 5, 6); + C = BitsOp(qQ.w, 0, 4); } if (BitsOp(C, 0, 2) == 5) { - q[1] = 4; - q[0] = BitsOp(C, 3, 4); + qQ.y = 4; + qQ.x = BitsOp(C, 3, 4); } else { - q[1] = BitsOp(C, 3, 4); - q[0] = BitsOp(C, 0, 2); + qQ.y = BitsOp(C, 3, 4); + qQ.x = BitsOp(C, 0, 2); } } for (uint i = 0; i < 3; i++) { - EncodingData val; - val.encoding = QUINT; - val.num_bits = num_bits; - val.bit_value = m[i]; - val.quint_trit_value = q[i]; + const EncodingData val = CreateEncodingData(QUINT, num_bits, m[i], qQ[i]); ResultEmplaceBack(val); } } void DecodeTritBlock(uint num_bits) { - uint m[5]; - uint t[5]; - uint T; + uvec4 m; + uvec4 t; + uvec3 Tm5t5; m[0] = StreamColorBits(num_bits); - T = StreamColorBits(2); + Tm5t5.x = StreamColorBits(2); m[1] = StreamColorBits(num_bits); - T |= StreamColorBits(2) << 2; + Tm5t5.x |= StreamColorBits(2) << 2; m[2] = StreamColorBits(num_bits); - T |= StreamColorBits(1) << 4; + Tm5t5.x |= StreamColorBits(1) << 4; m[3] = StreamColorBits(num_bits); - T |= StreamColorBits(2) << 5; - m[4] = StreamColorBits(num_bits); - T |= StreamColorBits(1) << 7; + Tm5t5.x |= StreamColorBits(2) << 5; + Tm5t5.y = StreamColorBits(num_bits); + Tm5t5.x |= StreamColorBits(1) << 7; uint C = 0; - if (BitsOp(T, 2, 4) == 7) { - C = (BitsOp(T, 5, 7) << 2) | BitsOp(T, 0, 1); - t[4] = 2; + if (BitsOp(Tm5t5.x, 2, 4) == 7) { + C = (BitsOp(Tm5t5.x, 5, 7) << 2) | BitsOp(Tm5t5.x, 0, 1); + Tm5t5.z = 2; t[3] = 2; } else { - C = BitsOp(T, 0, 4); - if (BitsOp(T, 5, 6) == 3) { - t[4] = 2; - t[3] = BitsBracket(T, 7); + C = BitsOp(Tm5t5.x, 0, 4); + if (BitsOp(Tm5t5.x, 5, 6) == 3) { + Tm5t5.z = 2; + t[3] = BitsBracket(Tm5t5.x, 7); } else { - t[4] = BitsBracket(T, 7); - t[3] = BitsOp(T, 5, 6); + Tm5t5.z = BitsBracket(Tm5t5.x, 7); + t[3] = BitsOp(Tm5t5.x, 5, 6); } } if (BitsOp(C, 0, 1) == 3) { @@ -508,31 +425,31 @@ void DecodeTritBlock(uint num_bits) { t[1] = BitsOp(C, 2, 3); t[0] = (BitsBracket(C, 1) << 1) | (BitsBracket(C, 0) & ~BitsBracket(C, 1)); } - for (uint i = 0; i < 5; i++) { - EncodingData val; - val.encoding = TRIT; - val.num_bits = num_bits; - val.bit_value = m[i]; - val.quint_trit_value = t[i]; + for (uint i = 0; i < 4; i++) { + const EncodingData val = CreateEncodingData(TRIT, num_bits, m[i], t[i]); ResultEmplaceBack(val); } + const EncodingData val = CreateEncodingData(TRIT, num_bits, Tm5t5.y, Tm5t5.z); + ResultEmplaceBack(val); } void DecodeIntegerSequence(uint max_range, uint num_values) { - EncodingData val = encoding_values[max_range]; + EncodingData val = EncodingData(encoding_values[max_range]); + const uint encoding = Encoding(val); + const uint num_bits = NumBits(val); uint vals_decoded = 0; - while (vals_decoded < num_values) { - switch (val.encoding) { + while (vals_decoded < num_values && !result_limit_reached) { + switch (encoding) { case QUINT: - DecodeQuintBlock(val.num_bits); + DecodeQuintBlock(num_bits); vals_decoded += 3; break; case TRIT: - DecodeTritBlock(val.num_bits); + DecodeTritBlock(num_bits); vals_decoded += 5; break; case JUST_BITS: - val.bit_value = StreamColorBits(val.num_bits); + BitValue(val, StreamColorBits(num_bits)); ResultEmplaceBack(val); vals_decoded++; break; @@ -540,7 +457,7 @@ void DecodeIntegerSequence(uint max_range, uint num_values) { } } -void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { +void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits, out uint color_values[32]) { uint num_values = 0; for (uint i = 0; i < num_partitions; i++) { num_values += ((modes[i] >> 2) + 1) << 1; @@ -549,7 +466,7 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { // TODO(ameerj): profile with binary search int range = 0; while (++range < encoding_values.length()) { - uint bit_length = GetBitLength(num_values, range); + const uint bit_length = GetBitLength(num_values, range); if (bit_length > color_data_bits) { break; } @@ -560,48 +477,49 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { if (out_index >= num_values) { break; } - EncodingData val = result_vector[itr]; - uint bitlen = val.num_bits; - uint bitval = val.bit_value; + const EncodingData val = GetEncodingFromVector(itr); + const uint encoding = Encoding(val); + const uint bitlen = NumBits(val); + const uint bitval = BitValue(val); uint A = 0, B = 0, C = 0, D = 0; A = ReplicateBitTo9((bitval & 1)); - switch (val.encoding) { + switch (encoding) { case JUST_BITS: - color_values[out_index++] = FastReplicateTo8(bitval, bitlen); + color_values[++out_index] = FastReplicateTo8(bitval, bitlen); break; case TRIT: { - D = val.quint_trit_value; + D = QuintTritValue(val); switch (bitlen) { case 1: C = 204; break; case 2: { C = 93; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 8) | (b << 4) | (b << 2) | (b << 1); break; } case 3: { C = 44; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 2) | cb; break; } case 4: { C = 22; - uint dcb = (bitval >> 1) & 7; + const uint dcb = (bitval >> 1) & 7; B = (dcb << 6) | dcb; break; } case 5: { C = 11; - uint edcb = (bitval >> 1) & 0xF; + const uint edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 2); break; } case 6: { C = 5; - uint fedcb = (bitval >> 1) & 0x1F; + const uint fedcb = (bitval >> 1) & 0x1F; B = (fedcb << 4) | (fedcb >> 4); break; } @@ -609,32 +527,32 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { break; } case QUINT: { - D = val.quint_trit_value; + D = QuintTritValue(val); switch (bitlen) { case 1: C = 113; break; case 2: { C = 54; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 8) | (b << 3) | (b << 2); break; } case 3: { C = 26; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 7) | (cb << 1) | (cb >> 1); break; } case 4: { C = 13; - uint dcb = (bitval >> 1) & 7; + const uint dcb = (bitval >> 1) & 7; B = (dcb << 6) | (dcb >> 1); break; } case 5: { C = 6; - uint edcb = (bitval >> 1) & 0xF; + const uint edcb = (bitval >> 1) & 0xF; B = (edcb << 5) | (edcb >> 3); break; } @@ -642,11 +560,11 @@ void DecodeColorValues(uvec4 modes, uint num_partitions, uint color_data_bits) { break; } } - if (val.encoding != JUST_BITS) { + if (encoding != JUST_BITS) { uint T = (D * C) + B; T ^= A; T = (A & 0x80) | (T >> 2); - color_values[out_index++] = T; + color_values[++out_index] = T; } } } @@ -664,139 +582,136 @@ ivec2 BitTransferSigned(int a, int b) { } uvec4 ClampByte(ivec4 color) { - for (uint i = 0; i < 4; ++i) { - color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]); - } - return uvec4(color); + return uvec4(clamp(color, 0, 255)); } ivec4 BlueContract(int a, int r, int g, int b) { return ivec4(a, (r + b) >> 1, (g + b) >> 1, b); } -void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) { +void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode, uint color_values[32], + inout uint colvals_index) { #define READ_UINT_VALUES(N) \ - uint v[N]; \ + uvec4 V[2]; \ for (uint i = 0; i < N; i++) { \ - v[i] = color_values[colvals_index++]; \ + V[i / 4][i % 4] = color_values[++colvals_index]; \ } - #define READ_INT_VALUES(N) \ - int v[N]; \ + ivec4 V[2]; \ for (uint i = 0; i < N; i++) { \ - v[i] = int(color_values[colvals_index++]); \ + V[i / 4][i % 4] = int(color_values[++colvals_index]); \ } switch (color_endpoint_mode) { case 0: { READ_UINT_VALUES(2) - ep1 = uvec4(0xFF, v[0], v[0], v[0]); - ep2 = uvec4(0xFF, v[1], v[1], v[1]); + ep1 = uvec4(0xFF, V[0].x, V[0].x, V[0].x); + ep2 = uvec4(0xFF, V[0].y, V[0].y, V[0].y); break; } case 1: { READ_UINT_VALUES(2) - uint L0 = (v[0] >> 2) | (v[1] & 0xC0); - uint L1 = min(L0 + (v[1] & 0x3F), 0xFFU); + const uint L0 = (V[0].x >> 2) | (V[0].y & 0xC0); + const uint L1 = min(L0 + (V[0].y & 0x3F), 0xFFU); ep1 = uvec4(0xFF, L0, L0, L0); ep2 = uvec4(0xFF, L1, L1, L1); break; } case 4: { READ_UINT_VALUES(4) - ep1 = uvec4(v[2], v[0], v[0], v[0]); - ep2 = uvec4(v[3], v[1], v[1], v[1]); + ep1 = uvec4(V[0].z, V[0].x, V[0].x, V[0].x); + ep2 = uvec4(V[0].w, V[0].y, V[0].y, V[0].y); break; } case 5: { READ_INT_VALUES(4) - ivec2 transferred = BitTransferSigned(v[1], v[0]); - v[1] = transferred.x; - v[0] = transferred.y; - transferred = BitTransferSigned(v[3], v[2]); - v[3] = transferred.x; - v[2] = transferred.y; - ep1 = ClampByte(ivec4(v[2], v[0], v[0], v[0])); - ep2 = ClampByte(ivec4(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1])); + ivec2 transferred = BitTransferSigned(V[0].y, V[0].x); + V[0].y = transferred.x; + V[0].x = transferred.y; + transferred = BitTransferSigned(V[0].w, V[0].z); + V[0].w = transferred.x; + V[0].z = transferred.y; + ep1 = ClampByte(ivec4(V[0].z, V[0].x, V[0].x, V[0].x)); + ep2 = ClampByte(ivec4(V[0].z + V[0].w, V[0].x + V[0].y, V[0].x + V[0].y, V[0].x + V[0].y)); break; } case 6: { READ_UINT_VALUES(4) - ep1 = uvec4(0xFF, (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8); - ep2 = uvec4(0xFF, v[0], v[1], v[2]); + ep1 = uvec4(0xFF, (V[0].x * V[0].w) >> 8, (V[0].y * V[0].w) >> 8, (V[0].z * V[0].w) >> 8); + ep2 = uvec4(0xFF, V[0].x, V[0].y, V[0].z); break; } case 8: { READ_UINT_VALUES(6) - if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) { - ep1 = uvec4(0xFF, v[0], v[2], v[4]); - ep2 = uvec4(0xFF, v[1], v[3], v[5]); + if ((V[0].y + V[0].w + V[1].y) >= (V[0].x + V[0].z + V[1].x)) { + ep1 = uvec4(0xFF, V[0].x, V[0].z, V[1].x); + ep2 = uvec4(0xFF, V[0].y, V[0].w, V[1].y); } else { - ep1 = uvec4(BlueContract(0xFF, int(v[1]), int(v[3]), int(v[5]))); - ep2 = uvec4(BlueContract(0xFF, int(v[0]), int(v[2]), int(v[4]))); + ep1 = uvec4(BlueContract(0xFF, int(V[0].y), int(V[0].w), int(V[1].y))); + ep2 = uvec4(BlueContract(0xFF, int(V[0].x), int(V[0].z), int(V[1].x))); } break; } case 9: { READ_INT_VALUES(6) - ivec2 transferred = BitTransferSigned(v[1], v[0]); - v[1] = transferred.x; - v[0] = transferred.y; - transferred = BitTransferSigned(v[3], v[2]); - v[3] = transferred.x; - v[2] = transferred.y; - transferred = BitTransferSigned(v[5], v[4]); - v[5] = transferred.x; - v[4] = transferred.y; - if ((v[1] + v[3] + v[5]) >= 0) { - ep1 = ClampByte(ivec4(0xFF, v[0], v[2], v[4])); - ep2 = ClampByte(ivec4(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5])); + ivec2 transferred = BitTransferSigned(V[0].y, V[0].x); + V[0].y = transferred.x; + V[0].x = transferred.y; + transferred = BitTransferSigned(V[0].w, V[0].z); + V[0].w = transferred.x; + V[0].z = transferred.y; + transferred = BitTransferSigned(V[1].y, V[1].x); + V[1].y = transferred.x; + V[1].x = transferred.y; + if ((V[0].y + V[0].w + V[1].y) >= 0) { + ep1 = ClampByte(ivec4(0xFF, V[0].x, V[0].z, V[1].x)); + ep2 = ClampByte(ivec4(0xFF, V[0].x + V[0].y, V[0].z + V[0].w, V[1].x + V[1].y)); } else { - ep1 = ClampByte(BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5])); - ep2 = ClampByte(BlueContract(0xFF, v[0], v[2], v[4])); + ep1 = ClampByte(BlueContract(0xFF, V[0].x + V[0].y, V[0].z + V[0].w, V[1].x + V[1].y)); + ep2 = ClampByte(BlueContract(0xFF, V[0].x, V[0].z, V[1].x)); } break; } case 10: { READ_UINT_VALUES(6) - ep1 = uvec4(v[4], (v[0] * v[3]) >> 8, (v[1] * v[3]) >> 8, (v[2] * v[3]) >> 8); - ep2 = uvec4(v[5], v[0], v[1], v[2]); + ep1 = uvec4(V[1].x, (V[0].x * V[0].w) >> 8, (V[0].y * V[0].w) >> 8, (V[0].z * V[0].w) >> 8); + ep2 = uvec4(V[1].y, V[0].x, V[0].y, V[0].z); break; } case 12: { READ_UINT_VALUES(8) - if ((v[1] + v[3] + v[5]) >= (v[0] + v[2] + v[4])) { - ep1 = uvec4(v[6], v[0], v[2], v[4]); - ep2 = uvec4(v[7], v[1], v[3], v[5]); + if ((V[0].y + V[0].w + V[1].y) >= (V[0].x + V[0].z + V[1].x)) { + ep1 = uvec4(V[1].z, V[0].x, V[0].z, V[1].x); + ep2 = uvec4(V[1].w, V[0].y, V[0].w, V[1].y); } else { - ep1 = uvec4(BlueContract(int(v[7]), int(v[1]), int(v[3]), int(v[5]))); - ep2 = uvec4(BlueContract(int(v[6]), int(v[0]), int(v[2]), int(v[4]))); + ep1 = uvec4(BlueContract(int(V[1].w), int(V[0].y), int(V[0].w), int(V[1].y))); + ep2 = uvec4(BlueContract(int(V[1].z), int(V[0].x), int(V[0].z), int(V[1].x))); } break; } case 13: { READ_INT_VALUES(8) - ivec2 transferred = BitTransferSigned(v[1], v[0]); - v[1] = transferred.x; - v[0] = transferred.y; - transferred = BitTransferSigned(v[3], v[2]); - v[3] = transferred.x; - v[2] = transferred.y; - - transferred = BitTransferSigned(v[5], v[4]); - v[5] = transferred.x; - v[4] = transferred.y; - - transferred = BitTransferSigned(v[7], v[6]); - v[7] = transferred.x; - v[6] = transferred.y; - - if ((v[1] + v[3] + v[5]) >= 0) { - ep1 = ClampByte(ivec4(v[6], v[0], v[2], v[4])); - ep2 = ClampByte(ivec4(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5])); + ivec2 transferred = BitTransferSigned(V[0].y, V[0].x); + V[0].y = transferred.x; + V[0].x = transferred.y; + transferred = BitTransferSigned(V[0].w, V[0].z); + V[0].w = transferred.x; + V[0].z = transferred.y; + + transferred = BitTransferSigned(V[1].y, V[1].x); + V[1].y = transferred.x; + V[1].x = transferred.y; + + transferred = BitTransferSigned(V[1].w, V[1].z); + V[1].w = transferred.x; + V[1].z = transferred.y; + + if ((V[0].y + V[0].w + V[1].y) >= 0) { + ep1 = ClampByte(ivec4(V[1].z, V[0].x, V[0].z, V[1].x)); + ep2 = ClampByte(ivec4(V[1].w + V[1].z, V[0].x + V[0].y, V[0].z + V[0].w, V[1].x + V[1].y)); } else { - ep1 = ClampByte(BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5])); - ep2 = ClampByte(BlueContract(v[6], v[0], v[2], v[4])); + ep1 = ClampByte(BlueContract(V[1].z + V[1].w, V[0].x + V[0].y, V[0].z + V[0].w, V[1].x + V[1].y)); + ep2 = ClampByte(BlueContract(V[1].z, V[0].x, V[0].z, V[1].x)); } break; } @@ -812,36 +727,34 @@ void ComputeEndpoints(out uvec4 ep1, out uvec4 ep2, uint color_endpoint_mode) { } uint UnquantizeTexelWeight(EncodingData val) { - uint bitval = val.bit_value; - uint bitlen = val.num_bits; - uint A = ReplicateBitTo7((bitval & 1)); + const uint encoding = Encoding(val); + const uint bitlen = NumBits(val); + const uint bitval = BitValue(val); + const uint A = ReplicateBitTo7((bitval & 1)); uint B = 0, C = 0, D = 0; uint result = 0; - switch (val.encoding) { + const uint bitlen_0_results[5] = {0, 16, 32, 48, 64}; + switch (encoding) { case JUST_BITS: - result = FastReplicateTo6(bitval, bitlen); - break; + return FastReplicateTo6(bitval, bitlen); case TRIT: { - D = val.quint_trit_value; + D = QuintTritValue(val); switch (bitlen) { - case 0: { - uint results[3] = {0, 32, 63}; - result = results[D]; - break; - } + case 0: + return bitlen_0_results[D * 2]; case 1: { C = 50; break; } case 2: { C = 23; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 6) | (b << 2) | b; break; } case 3: { C = 11; - uint cb = (bitval >> 1) & 3; + const uint cb = (bitval >> 1) & 3; B = (cb << 5) | cb; break; } @@ -851,20 +764,17 @@ uint UnquantizeTexelWeight(EncodingData val) { break; } case QUINT: { - D = val.quint_trit_value; + D = QuintTritValue(val); switch (bitlen) { - case 0: { - uint results[5] = {0, 16, 32, 47, 63}; - result = results[D]; - break; - } + case 0: + return bitlen_0_results[D]; case 1: { C = 28; break; } case 2: { C = 13; - uint b = (bitval >> 1) & 1; + const uint b = (bitval >> 1) & 1; B = (b << 6) | (b << 1); break; } @@ -872,7 +782,7 @@ uint UnquantizeTexelWeight(EncodingData val) { break; } } - if (val.encoding != JUST_BITS && bitlen > 0) { + if (encoding != JUST_BITS && bitlen > 0) { result = D * C + B; result ^= A; result = (A & 0x20) | (result >> 2); @@ -883,61 +793,77 @@ uint UnquantizeTexelWeight(EncodingData val) { return result; } -void UnquantizeTexelWeights(bool dual_plane, uvec2 size) { - uint weight_idx = 0; - uint unquantized[2][144]; - uint area = size.x * size.y; - for (uint itr = 0; itr < texel_vector_index; itr++) { - unquantized[0][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]); - if (dual_plane) { - ++itr; - unquantized[1][weight_idx] = UnquantizeTexelWeight(texel_vector[itr]); - if (itr == texel_vector_index) { - break; - } - } - if (++weight_idx >= (area)) - break; +void UnquantizeTexelWeights(uvec2 size, bool is_dual_plane) { + const uint num_planes = is_dual_plane ? 2 : 1; + const uint area = size.x * size.y; + const uint loop_count = min(result_index, area * num_planes); + for (uint itr = 0; itr < loop_count; ++itr) { + result_vector[itr] = + UnquantizeTexelWeight(GetEncodingFromVector(itr)); } +} + +uint GetUnquantizedTexelWieght(uint offset_base, uint plane, bool is_dual_plane) { + const uint offset = is_dual_plane ? 2 * offset_base + plane : offset_base; + return result_vector[offset]; +} +uvec4 GetUnquantizedWeightVector(uint t, uint s, uvec2 size, uint plane_index, bool is_dual_plane) { const uint Ds = uint((block_dims.x * 0.5f + 1024) / (block_dims.x - 1)); const uint Dt = uint((block_dims.y * 0.5f + 1024) / (block_dims.y - 1)); - const uint k_plane_scale = dual_plane ? 2 : 1; - for (uint plane = 0; plane < k_plane_scale; plane++) { - for (uint t = 0; t < block_dims.y; t++) { - for (uint s = 0; s < block_dims.x; s++) { - uint cs = Ds * s; - uint ct = Dt * t; - uint gs = (cs * (size.x - 1) + 32) >> 6; - uint gt = (ct * (size.y - 1) + 32) >> 6; - uint js = gs >> 4; - uint fs = gs & 0xF; - uint jt = gt >> 4; - uint ft = gt & 0x0F; - uint w11 = (fs * ft + 8) >> 4; - uint w10 = ft - w11; - uint w01 = fs - w11; - uint w00 = 16 - fs - ft + w11; - uvec4 w = uvec4(w00, w01, w10, w11); - uint v0 = jt * size.x + js; - - uvec4 p = uvec4(0); - if (v0 < area) { - p.x = unquantized[plane][v0]; - } - if ((v0 + 1) < (area)) { - p.y = unquantized[plane][v0 + 1]; - } - if ((v0 + size.x) < (area)) { - p.z = unquantized[plane][(v0 + size.x)]; - } - if ((v0 + size.x + 1) < (area)) { - p.w = unquantized[plane][(v0 + size.x + 1)]; - } - unquantized_texel_weights[plane][t * block_dims.x + s] = (uint(dot(p, w)) + 8) >> 4; - } + const uint area = size.x * size.y; + + const uint cs = Ds * s; + const uint ct = Dt * t; + const uint gs = (cs * (size.x - 1) + 32) >> 6; + const uint gt = (ct * (size.y - 1) + 32) >> 6; + const uint js = gs >> 4; + const uint fs = gs & 0xF; + const uint jt = gt >> 4; + const uint ft = gt & 0x0F; + const uint w11 = (fs * ft + 8) >> 4; + const uint w10 = ft - w11; + const uint w01 = fs - w11; + const uint w00 = 16 - fs - ft + w11; + const uvec4 w = uvec4(w00, w01, w10, w11); + const uint v0 = jt * size.x + js; + + uvec4 p0 = uvec4(0); + uvec4 p1 = uvec4(0); + + if (v0 < area) { + const uint offset_base = v0; + p0.x = GetUnquantizedTexelWieght(offset_base, 0, is_dual_plane); + p1.x = GetUnquantizedTexelWieght(offset_base, 1, is_dual_plane); + } + if ((v0 + 1) < (area)) { + const uint offset_base = v0 + 1; + p0.y = GetUnquantizedTexelWieght(offset_base, 0, is_dual_plane); + p1.y = GetUnquantizedTexelWieght(offset_base, 1, is_dual_plane); + } + if ((v0 + size.x) < (area)) { + const uint offset_base = v0 + size.x; + p0.z = GetUnquantizedTexelWieght(offset_base, 0, is_dual_plane); + p1.z = GetUnquantizedTexelWieght(offset_base, 1, is_dual_plane); + } + if ((v0 + size.x + 1) < (area)) { + const uint offset_base = v0 + size.x + 1; + p0.w = GetUnquantizedTexelWieght(offset_base, 0, is_dual_plane); + p1.w = GetUnquantizedTexelWieght(offset_base, 1, is_dual_plane); + } + + const uint primary_weight = (uint(dot(p0, w)) + 8) >> 4; + + uvec4 weight_vec = uvec4(primary_weight); + + if (is_dual_plane) { + const uint secondary_weight = (uint(dot(p1, w)) + 8) >> 4; + for (uint c = 0; c < 4; c++) { + const bool is_secondary = ((plane_index + 1u) & 3u) == c; + weight_vec[c] = is_secondary ? secondary_weight : primary_weight; } } + return weight_vec; } int FindLayout(uint mode) { @@ -971,80 +897,96 @@ int FindLayout(uint mode) { return 5; } -TexelWeightParams DecodeBlockInfo() { - TexelWeightParams params = TexelWeightParams(uvec2(0), 0, false, false, false, false); - uint mode = StreamBits(11); + +void FillError(ivec3 coord) { + for (uint j = 0; j < block_dims.y; j++) { + for (uint i = 0; i < block_dims.x; i++) { + imageStore(dest_image, coord + ivec3(i, j, 0), vec4(0.0, 0.0, 0.0, 0.0)); + } + } +} + +void FillVoidExtentLDR(ivec3 coord) { + SkipBits(52); + const uint r_u = StreamBits(16); + const uint g_u = StreamBits(16); + const uint b_u = StreamBits(16); + const uint a_u = StreamBits(16); + const float a = float(a_u) / 65535.0f; + const float r = float(r_u) / 65535.0f; + const float g = float(g_u) / 65535.0f; + const float b = float(b_u) / 65535.0f; + for (uint j = 0; j < block_dims.y; j++) { + for (uint i = 0; i < block_dims.x; i++) { + imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a)); + } + } +} + +bool IsError(uint mode) { if ((mode & 0x1ff) == 0x1fc) { if ((mode & 0x200) != 0) { - params.void_extent_hdr = true; - } else { - params.void_extent_ldr = true; + // params.void_extent_hdr = true; + return true; } if ((mode & 0x400) == 0 || StreamBits(1) == 0) { - params.error_state = true; + return true; } - return params; + return false; } if ((mode & 0xf) == 0) { - params.error_state = true; - return params; + return true; } if ((mode & 3) == 0 && (mode & 0x1c0) == 0x1c0) { - params.error_state = true; - return params; + return true; } + return false; +} + +uvec2 DecodeBlockSize(uint mode) { uint A, B; - uint mode_layout = FindLayout(mode); - switch (mode_layout) { + switch (FindLayout(mode)) { case 0: A = (mode >> 5) & 0x3; B = (mode >> 7) & 0x3; - params.size = uvec2(B + 4, A + 2); - break; + return uvec2(B + 4, A + 2); case 1: A = (mode >> 5) & 0x3; B = (mode >> 7) & 0x3; - params.size = uvec2(B + 8, A + 2); - break; + return uvec2(B + 8, A + 2); case 2: A = (mode >> 5) & 0x3; B = (mode >> 7) & 0x3; - params.size = uvec2(A + 2, B + 8); - break; + return uvec2(A + 2, B + 8); case 3: A = (mode >> 5) & 0x3; B = (mode >> 7) & 0x1; - params.size = uvec2(A + 2, B + 6); - break; + return uvec2(A + 2, B + 6); case 4: A = (mode >> 5) & 0x3; B = (mode >> 7) & 0x1; - params.size = uvec2(B + 2, A + 2); - break; + return uvec2(B + 2, A + 2); case 5: A = (mode >> 5) & 0x3; - params.size = uvec2(12, A + 2); - break; + return uvec2(12, A + 2); case 6: A = (mode >> 5) & 0x3; - params.size = uvec2(A + 2, 12); - break; + return uvec2(A + 2, 12); case 7: - params.size = uvec2(6, 10); - break; + return uvec2(6, 10); case 8: - params.size = uvec2(10, 6); - break; + return uvec2(10, 6); case 9: A = (mode >> 5) & 0x3; B = (mode >> 9) & 0x3; - params.size = uvec2(A + 6, B + 6); - break; + return uvec2(A + 6, B + 6); default: - params.error_state = true; - break; + return uvec2(0); } - params.dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0); +} + +uint DecodeMaxWeight(uint mode) { + const uint mode_layout = FindLayout(mode); uint weight_index = (mode & 0x10) != 0 ? 1 : 0; if (mode_layout < 5) { weight_index |= (mode & 0x3) << 1; @@ -1053,64 +995,34 @@ TexelWeightParams DecodeBlockInfo() { } weight_index -= 2; if ((mode_layout != 9) && ((mode & 0x200) != 0)) { - const int max_weights[6] = int[6](7, 8, 9, 10, 11, 12); - params.max_weight = max_weights[weight_index]; - } else { - const int max_weights[6] = int[6](1, 2, 3, 4, 5, 6); - params.max_weight = max_weights[weight_index]; - } - return params; -} - -void FillError(ivec3 coord) { - for (uint j = 0; j < block_dims.y; j++) { - for (uint i = 0; i < block_dims.x; i++) { - imageStore(dest_image, coord + ivec3(i, j, 0), vec4(0.0, 0.0, 0.0, 0.0)); - } - } -} - -void FillVoidExtentLDR(ivec3 coord) { - StreamBits(52); - uint r_u = StreamBits(16); - uint g_u = StreamBits(16); - uint b_u = StreamBits(16); - uint a_u = StreamBits(16); - float a = float(a_u) / 65535.0f; - float r = float(r_u) / 65535.0f; - float g = float(g_u) / 65535.0f; - float b = float(b_u) / 65535.0f; - for (uint j = 0; j < block_dims.y; j++) { - for (uint i = 0; i < block_dims.x; i++) { - imageStore(dest_image, coord + ivec3(i, j, 0), vec4(r, g, b, a)); - } + weight_index += 6; } + return weight_index + 1; } void DecompressBlock(ivec3 coord) { - TexelWeightParams params = DecodeBlockInfo(); - if (params.error_state) { - FillError(coord); - return; - } - if (params.void_extent_hdr) { + uint mode = StreamBits(11); + if (IsError(mode)) { FillError(coord); return; } - if (params.void_extent_ldr) { + if ((mode & 0x1ff) == 0x1fc) { + // params.void_extent_ldr = true; FillVoidExtentLDR(coord); return; } - if ((params.size.x > block_dims.x) || (params.size.y > block_dims.y)) { + const uvec2 size_params = DecodeBlockSize(mode); + if ((size_params.x > block_dims.x) || (size_params.y > block_dims.y)) { FillError(coord); return; } - uint num_partitions = StreamBits(2) + 1; - if (num_partitions > 4 || (num_partitions == 4 && params.dual_plane)) { + const uint num_partitions = StreamBits(2) + 1; + const uint mode_layout = FindLayout(mode); + const bool dual_plane = (mode_layout != 9) && ((mode & 0x400) != 0); + if (num_partitions > 4 || (num_partitions == 4 && dual_plane)) { FillError(coord); return; } - int plane_index = -1; uint partition_index = 1; uvec4 color_endpoint_mode = uvec4(0); uint ced_pointer = 0; @@ -1122,8 +1034,9 @@ void DecompressBlock(ivec3 coord) { partition_index = StreamBits(10); base_cem = StreamBits(6); } - uint base_mode = base_cem & 3; - uint weight_bits = GetPackedBitSize(params.size, params.dual_plane, params.max_weight); + const uint base_mode = base_cem & 3; + const uint max_weight = DecodeMaxWeight(mode); + const uint weight_bits = GetPackedBitSize(size_params, dual_plane, max_weight); uint remaining_bits = 128 - weight_bits - total_bitsread; uint extra_cem_bits = 0; if (base_mode > 0) { @@ -1142,10 +1055,7 @@ void DecompressBlock(ivec3 coord) { } } remaining_bits -= extra_cem_bits; - uint plane_selector_bits = 0; - if (params.dual_plane) { - plane_selector_bits = 2; - } + const uint plane_selector_bits = dual_plane ? 2 : 0; remaining_bits -= plane_selector_bits; if (remaining_bits > 128) { // Bad data, more remaining bits than 4 bytes @@ -1153,17 +1063,17 @@ void DecompressBlock(ivec3 coord) { return; } // Read color data... - uint color_data_bits = remaining_bits; + const uint color_data_bits = remaining_bits; while (remaining_bits > 0) { - int nb = int(min(remaining_bits, 32U)); - uint b = StreamBits(nb); + const int nb = int(min(remaining_bits, 32U)); + const uint b = StreamBits(nb); color_endpoint_data[ced_pointer] = uint(bitfieldExtract(b, 0, nb)); ++ced_pointer; remaining_bits -= nb; } - plane_index = int(StreamBits(plane_selector_bits)); + const uint plane_index = uint(StreamBits(plane_selector_bits)); if (base_mode > 0) { - uint extra_cem = StreamBits(extra_cem_bits); + const uint extra_cem = StreamBits(extra_cem_bits); uint cem = (extra_cem << 6) | base_cem; cem >>= 2; uvec4 C = uvec4(0); @@ -1185,70 +1095,80 @@ void DecompressBlock(ivec3 coord) { color_endpoint_mode[i] |= M[i]; } } else if (num_partitions > 1) { - uint cem = base_cem >> 2; + const uint cem = base_cem >> 2; for (uint i = 0; i < num_partitions; i++) { color_endpoint_mode[i] = cem; } } - DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits); - uvec4 endpoints[4][2]; - for (uint i = 0; i < num_partitions; i++) { - ComputeEndpoints(endpoints[i][0], endpoints[i][1], color_endpoint_mode[i]); + uvec4 endpoints0[4]; + uvec4 endpoints1[4]; + { + // This decode phase should at most push 32 elements into the vector + result_vector_max_index = 32; + uint color_values[32]; + uint colvals_index = 0; + DecodeColorValues(color_endpoint_mode, num_partitions, color_data_bits, color_values); + for (uint i = 0; i < num_partitions; i++) { + ComputeEndpoints(endpoints0[i], endpoints1[i], color_endpoint_mode[i], color_values, + colvals_index); + } } + color_endpoint_data = local_buff; + color_endpoint_data = bitfieldReverse(color_endpoint_data).wzyx; + const uint clear_byte_start = (weight_bits >> 3) + 1; - texel_weight_data = local_buff; - texel_weight_data = bitfieldReverse(texel_weight_data).wzyx; - uint clear_byte_start = - (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) >> 3) + 1; - - uint byte_insert = ExtractBits(texel_weight_data, int(clear_byte_start - 1) * 8, 8) & - uint( - ((1 << (GetPackedBitSize(params.size, params.dual_plane, params.max_weight) % 8)) - 1)); - uint vec_index = (clear_byte_start - 1) >> 2; - texel_weight_data[vec_index] = - bitfieldInsert(texel_weight_data[vec_index], byte_insert, int((clear_byte_start - 1) % 4) * 8, 8); + const uint byte_insert = ExtractBits(color_endpoint_data, int(clear_byte_start - 1) * 8, 8) & + uint(((1 << (weight_bits % 8)) - 1)); + const uint vec_index = (clear_byte_start - 1) >> 2; + color_endpoint_data[vec_index] = bitfieldInsert(color_endpoint_data[vec_index], byte_insert, + int((clear_byte_start - 1) % 4) * 8, 8); for (uint i = clear_byte_start; i < 16; ++i) { - uint idx = i >> 2; - texel_weight_data[idx] = bitfieldInsert(texel_weight_data[idx], 0, int(i % 4) * 8, 8); + const uint idx = i >> 2; + color_endpoint_data[idx] = bitfieldInsert(color_endpoint_data[idx], 0, int(i % 4) * 8, 8); } - texel_flag = true; // use texel "vector" and bit stream in integer decoding - DecodeIntegerSequence(params.max_weight, GetNumWeightValues(params.size, params.dual_plane)); - UnquantizeTexelWeights(params.dual_plane, params.size); + // Re-init vector variables for next decode phase + result_index = 0; + color_bitsread = 0; + result_limit_reached = false; + // The limit for the Unquantize phase, avoids decoding more data than needed. + result_vector_max_index = size_params.x * size_params.y; + if (dual_plane) { + result_vector_max_index *= 2; + } + DecodeIntegerSequence(max_weight, GetNumWeightValues(size_params, dual_plane)); + + UnquantizeTexelWeights(size_params, dual_plane); for (uint j = 0; j < block_dims.y; j++) { for (uint i = 0; i < block_dims.x; i++) { uint local_partition = 0; if (num_partitions > 1) { - local_partition = Select2DPartition(partition_index, i, j, num_partitions, - (block_dims.y * block_dims.x) < 32); - } - vec4 p; - uvec4 C0 = ReplicateByteTo16(endpoints[local_partition][0]); - uvec4 C1 = ReplicateByteTo16(endpoints[local_partition][1]); - uvec4 plane_vec = uvec4(0); - uvec4 weight_vec = uvec4(0); - for (uint c = 0; c < 4; c++) { - if (params.dual_plane && (((plane_index + 1) & 3) == c)) { - plane_vec[c] = 1; - } - weight_vec[c] = unquantized_texel_weights[plane_vec[c]][j * block_dims.x + i]; + local_partition = Select2DPartition(partition_index, i, j, num_partitions); } - vec4 Cf = vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64); - p = (Cf / 65535.0); + const uvec4 C0 = ReplicateByteTo16(endpoints0[local_partition]); + const uvec4 C1 = ReplicateByteTo16(endpoints1[local_partition]); + const uvec4 weight_vec = GetUnquantizedWeightVector(j, i, size_params, plane_index, dual_plane); + const vec4 Cf = + vec4((C0 * (uvec4(64) - weight_vec) + C1 * weight_vec + uvec4(32)) / 64); + const vec4 p = (Cf / 65535.0f); imageStore(dest_image, coord + ivec3(i, j, 0), p.gbar); } } } +uint SwizzleOffset(uvec2 pos) { + const uint x = pos.x; + const uint y = pos.y; + return ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + + ((x % 32) / 16) * 32 + (y % 2) * 16 + (x % 16); +} + void main() { uvec3 pos = gl_GlobalInvocationID; pos.x <<= BYTES_PER_BLOCK_LOG2; - - // Read as soon as possible due to its latency const uint swizzle = SwizzleOffset(pos.xy); - const uint block_y = pos.y >> GOB_SIZE_Y_SHIFT; uint offset = 0; @@ -1262,8 +1182,6 @@ void main() { if (any(greaterThanEqual(coord, imageSize(dest_image)))) { return; } - current_index = 0; - bitsread = 0; local_buff = astc_data[offset / 16]; DecompressBlock(coord); } diff --git a/src/video_core/renderer_opengl/util_shaders.cpp b/src/video_core/renderer_opengl/util_shaders.cpp index 544982d18..c437013e6 100644 --- a/src/video_core/renderer_opengl/util_shaders.cpp +++ b/src/video_core/renderer_opengl/util_shaders.cpp @@ -68,6 +68,7 @@ void UtilShaders::ASTCDecode(Image& image, const StagingBufferMap& map, std::span<const VideoCommon::SwizzleParameters> swizzles) { static constexpr GLuint BINDING_INPUT_BUFFER = 0; static constexpr GLuint BINDING_OUTPUT_IMAGE = 0; + program_manager.LocalMemoryWarmup(); const Extent2D tile_size{ .width = VideoCore::Surface::DefaultBlockWidth(image.info.format), |