summaryrefslogtreecommitdiffstats
path: root/g4f/Provider/nexra/NexraChatGPT.py
diff options
context:
space:
mode:
Diffstat (limited to 'g4f/Provider/nexra/NexraChatGPT.py')
-rw-r--r--g4f/Provider/nexra/NexraChatGPT.py285
1 files changed, 285 insertions, 0 deletions
diff --git a/g4f/Provider/nexra/NexraChatGPT.py b/g4f/Provider/nexra/NexraChatGPT.py
new file mode 100644
index 00000000..074a0363
--- /dev/null
+++ b/g4f/Provider/nexra/NexraChatGPT.py
@@ -0,0 +1,285 @@
+from __future__ import annotations
+
+import asyncio
+import json
+import requests
+from typing import Any, Dict
+
+from ...typing import AsyncResult, Messages
+from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin
+from ..helper import format_prompt
+
+
+class NexraChatGPT(AsyncGeneratorProvider, ProviderModelMixin):
+ label = "Nexra ChatGPT"
+ url = "https://nexra.aryahcr.cc/documentation/chatgpt/en"
+ api_endpoint_nexra_chatgpt = "https://nexra.aryahcr.cc/api/chat/gpt"
+ api_endpoint_nexra_chatgpt4o = "https://nexra.aryahcr.cc/api/chat/complements"
+ api_endpoint_nexra_chatgpt_v2 = "https://nexra.aryahcr.cc/api/chat/complements"
+ api_endpoint_nexra_gptweb = "https://nexra.aryahcr.cc/api/chat/gptweb"
+ working = True
+ supports_system_message = True
+ supports_message_history = True
+ supports_stream = True
+
+ default_model = 'gpt-3.5-turbo'
+ nexra_chatgpt = [
+ 'gpt-4', 'gpt-4-0613', 'gpt-4-0314', 'gpt-4-32k-0314',
+ default_model, 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301',
+ 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', 'gpt-3', 'text-curie-001', 'text-babbage-001', 'text-ada-001', 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002'
+ ]
+ nexra_chatgpt4o = ['gpt-4o']
+ nexra_chatgptv2 = ['chatgpt']
+ nexra_gptweb = ['gptweb']
+ models = nexra_chatgpt + nexra_chatgpt4o + nexra_chatgptv2 + nexra_gptweb
+
+ model_aliases = {
+ "gpt-4": "gpt-4-0613",
+ "gpt-4-32k": "gpt-4-32k-0314",
+ "gpt-3.5-turbo": "gpt-3.5-turbo-16k",
+ "gpt-3.5-turbo-0613": "gpt-3.5-turbo-16k-0613",
+ "gpt-3": "text-davinci-003",
+ "text-davinci-002": "code-davinci-002",
+ "text-curie-001": "text-babbage-001",
+ "text-ada-001": "davinci",
+ "curie": "babbage",
+ "ada": "babbage-002",
+ "davinci-002": "davinci-002",
+ "chatgpt": "chatgpt",
+ "gptweb": "gptweb"
+ }
+
+ @classmethod
+ def get_model(cls, model: str) -> str:
+ if model in cls.models:
+ return model
+ elif model in cls.model_aliases:
+ return cls.model_aliases[model]
+ else:
+ return cls.default_model
+
+ @classmethod
+ async def create_async_generator(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ if model in cls.nexra_chatgpt:
+ async for chunk in cls._create_async_generator_nexra_chatgpt(model, messages, proxy, **kwargs):
+ yield chunk
+ elif model in cls.nexra_chatgpt4o:
+ async for chunk in cls._create_async_generator_nexra_chatgpt4o(model, messages, stream, proxy, markdown, **kwargs):
+ yield chunk
+ elif model in cls.nexra_chatgptv2:
+ async for chunk in cls._create_async_generator_nexra_chatgpt_v2(model, messages, stream, proxy, markdown, **kwargs):
+ yield chunk
+ elif model in cls.nexra_gptweb:
+ async for chunk in cls._create_async_generator_nexra_gptweb(model, messages, proxy, **kwargs):
+ yield chunk
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": messages,
+ "prompt": prompt,
+ "model": model,
+ "markdown": markdown
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt, data, headers, proxy)
+ filtered_response = cls._filter_response(response)
+
+ for chunk in filtered_response:
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt4o(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": prompt
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt4o, data, headers, proxy, stream)
+
+ if stream:
+ async for chunk in cls._process_streaming_response(response):
+ yield chunk
+ else:
+ for chunk in cls._process_non_streaming_response(response):
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt4o): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_chatgpt_v2(
+ cls,
+ model: str,
+ messages: Messages,
+ stream: bool = False,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "messages": [
+ {
+ "role": "user",
+ "content": prompt
+ }
+ ],
+ "stream": stream,
+ "markdown": markdown,
+ "model": model
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt_v2, data, headers, proxy, stream)
+
+ if stream:
+ async for chunk in cls._process_streaming_response(response):
+ yield chunk
+ else:
+ for chunk in cls._process_non_streaming_response(response):
+ yield chunk
+ except Exception as e:
+ print(f"Error during API request (nexra_chatgpt_v2): {e}")
+
+ @classmethod
+ async def _create_async_generator_nexra_gptweb(
+ cls,
+ model: str,
+ messages: Messages,
+ proxy: str = None,
+ markdown: bool = False,
+ **kwargs
+ ) -> AsyncResult:
+ model = cls.get_model(model)
+
+ headers = {
+ "Content-Type": "application/json"
+ }
+
+ prompt = format_prompt(messages)
+ data = {
+ "prompt": prompt,
+ "markdown": markdown,
+ }
+
+ loop = asyncio.get_event_loop()
+ try:
+ response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_gptweb, data, headers, proxy)
+
+ for chunk in response.iter_content(1024):
+ if chunk:
+ decoded_chunk = chunk.decode().lstrip('_')
+ try:
+ response_json = json.loads(decoded_chunk)
+ if response_json.get("status"):
+ yield response_json.get("gpt", "")
+ except json.JSONDecodeError:
+ continue
+ except Exception as e:
+ print(f"Error during API request (nexra_gptweb): {e}")
+
+ @staticmethod
+ def _sync_post_request(url: str, data: Dict[str, Any], headers: Dict[str, str], proxy: str = None, stream: bool = False) -> requests.Response:
+ proxies = {
+ "http": proxy,
+ "https": proxy,
+ } if proxy else None
+
+ try:
+ response = requests.post(url, json=data, headers=headers, proxies=proxies, stream=stream)
+ response.raise_for_status()
+ return response
+ except requests.RequestException as e:
+ print(f"Request failed: {e}")
+ raise
+
+ @staticmethod
+ def _process_non_streaming_response(response: requests.Response) -> str:
+ if response.status_code == 200:
+ try:
+ content = response.text.lstrip('')
+ data = json.loads(content)
+ return data.get('message', '')
+ except json.JSONDecodeError:
+ return "Error: Unable to decode JSON response"
+ else:
+ return f"Error: {response.status_code}"
+
+ @staticmethod
+ async def _process_streaming_response(response: requests.Response):
+ full_message = ""
+ for line in response.iter_lines(decode_unicode=True):
+ if line:
+ try:
+ line = line.lstrip('')
+ data = json.loads(line)
+ if data.get('finish'):
+ break
+ message = data.get('message', '')
+ if message:
+ yield message[len(full_message):]
+ full_message = message
+ except json.JSONDecodeError:
+ pass
+
+ @staticmethod
+ def _filter_response(response: requests.Response) -> str:
+ response_json = response.json()
+ return response_json.get("gpt", "")