diff options
Diffstat (limited to 'g4f/Provider/nexra')
-rw-r--r-- | g4f/Provider/nexra/NexraBing.py | 93 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraBlackbox.py | 100 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraChatGPT.py | 285 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraDallE.py | 63 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraDallE2.py | 63 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraEmi.py | 63 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraFluxPro.py | 70 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraGeminiPro.py | 86 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraMidjourney.py | 63 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraProdiaAI.py | 151 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraQwen.py | 86 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraSD15.py | 72 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraSDLora.py | 69 | ||||
-rw-r--r-- | g4f/Provider/nexra/NexraSDTurbo.py | 69 | ||||
-rw-r--r-- | g4f/Provider/nexra/__init__.py | 14 |
15 files changed, 1347 insertions, 0 deletions
diff --git a/g4f/Provider/nexra/NexraBing.py b/g4f/Provider/nexra/NexraBing.py new file mode 100644 index 00000000..28f0b117 --- /dev/null +++ b/g4f/Provider/nexra/NexraBing.py @@ -0,0 +1,93 @@ +from __future__ import annotations + +import json +import requests + +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ..helper import format_prompt + +class NexraBing(AbstractProvider, ProviderModelMixin): + label = "Nexra Bing" + url = "https://nexra.aryahcr.cc/documentation/bing/en" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + working = True + supports_stream = True + + default_model = 'Balanced' + models = [default_model, 'Creative', 'Precise'] + + model_aliases = { + "gpt-4": "Balanced", + "gpt-4": "Creative", + "gpt-4": "Precise", + } + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "messages": [ + { + "role": "user", + "content": format_prompt(messages) + } + ], + "conversation_style": model, + "markdown": markdown, + "stream": stream, + "model": "Bing" + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=True) + + return cls.process_response(response) + + @classmethod + def process_response(cls, response): + if response.status_code != 200: + yield f"Error: {response.status_code}" + return + + full_message = "" + for chunk in response.iter_content(chunk_size=None): + if chunk: + messages = chunk.decode('utf-8').split('\x1e') + for message in messages: + try: + json_data = json.loads(message) + if json_data.get('finish', False): + return + current_message = json_data.get('message', '') + if current_message: + new_content = current_message[len(full_message):] + if new_content: + yield new_content + full_message = current_message + except json.JSONDecodeError: + continue + + if not full_message: + yield "No message received" diff --git a/g4f/Provider/nexra/NexraBlackbox.py b/g4f/Provider/nexra/NexraBlackbox.py new file mode 100644 index 00000000..be048fdd --- /dev/null +++ b/g4f/Provider/nexra/NexraBlackbox.py @@ -0,0 +1,100 @@ +from __future__ import annotations + +import json +import requests + +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ..helper import format_prompt + +class NexraBlackbox(AbstractProvider, ProviderModelMixin): + label = "Nexra Blackbox" + url = "https://nexra.aryahcr.cc/documentation/blackbox/en" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + working = True + supports_stream = True + + default_model = "blackbox" + models = [default_model] + model_aliases = {"blackboxai": "blackbox",} + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + stream: bool, + proxy: str = None, + markdown: bool = False, + websearch: bool = False, + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "messages": [ + { + "role": "user", + "content": format_prompt(messages) + } + ], + "websearch": websearch, + "stream": stream, + "markdown": markdown, + "model": model + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream) + + if stream: + return cls.process_streaming_response(response) + else: + return cls.process_non_streaming_response(response) + + @classmethod + def process_non_streaming_response(cls, response): + if response.status_code == 200: + try: + full_response = "" + for line in response.iter_lines(decode_unicode=True): + if line: + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message: + full_response = message + return full_response + except json.JSONDecodeError: + return "Error: Unable to decode JSON response" + else: + return f"Error: {response.status_code}" + + @classmethod + def process_streaming_response(cls, response): + previous_message = "" + for line in response.iter_lines(decode_unicode=True): + if line: + try: + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message and message != previous_message: + yield message[len(previous_message):] + previous_message = message + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraChatGPT.py b/g4f/Provider/nexra/NexraChatGPT.py new file mode 100644 index 00000000..074a0363 --- /dev/null +++ b/g4f/Provider/nexra/NexraChatGPT.py @@ -0,0 +1,285 @@ +from __future__ import annotations + +import asyncio +import json +import requests +from typing import Any, Dict + +from ...typing import AsyncResult, Messages +from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin +from ..helper import format_prompt + + +class NexraChatGPT(AsyncGeneratorProvider, ProviderModelMixin): + label = "Nexra ChatGPT" + url = "https://nexra.aryahcr.cc/documentation/chatgpt/en" + api_endpoint_nexra_chatgpt = "https://nexra.aryahcr.cc/api/chat/gpt" + api_endpoint_nexra_chatgpt4o = "https://nexra.aryahcr.cc/api/chat/complements" + api_endpoint_nexra_chatgpt_v2 = "https://nexra.aryahcr.cc/api/chat/complements" + api_endpoint_nexra_gptweb = "https://nexra.aryahcr.cc/api/chat/gptweb" + working = True + supports_system_message = True + supports_message_history = True + supports_stream = True + + default_model = 'gpt-3.5-turbo' + nexra_chatgpt = [ + 'gpt-4', 'gpt-4-0613', 'gpt-4-0314', 'gpt-4-32k-0314', + default_model, 'gpt-3.5-turbo-16k', 'gpt-3.5-turbo-0613', 'gpt-3.5-turbo-16k-0613', 'gpt-3.5-turbo-0301', + 'text-davinci-003', 'text-davinci-002', 'code-davinci-002', 'gpt-3', 'text-curie-001', 'text-babbage-001', 'text-ada-001', 'davinci', 'curie', 'babbage', 'ada', 'babbage-002', 'davinci-002' + ] + nexra_chatgpt4o = ['gpt-4o'] + nexra_chatgptv2 = ['chatgpt'] + nexra_gptweb = ['gptweb'] + models = nexra_chatgpt + nexra_chatgpt4o + nexra_chatgptv2 + nexra_gptweb + + model_aliases = { + "gpt-4": "gpt-4-0613", + "gpt-4-32k": "gpt-4-32k-0314", + "gpt-3.5-turbo": "gpt-3.5-turbo-16k", + "gpt-3.5-turbo-0613": "gpt-3.5-turbo-16k-0613", + "gpt-3": "text-davinci-003", + "text-davinci-002": "code-davinci-002", + "text-curie-001": "text-babbage-001", + "text-ada-001": "davinci", + "curie": "babbage", + "ada": "babbage-002", + "davinci-002": "davinci-002", + "chatgpt": "chatgpt", + "gptweb": "gptweb" + } + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + async def create_async_generator( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + if model in cls.nexra_chatgpt: + async for chunk in cls._create_async_generator_nexra_chatgpt(model, messages, proxy, **kwargs): + yield chunk + elif model in cls.nexra_chatgpt4o: + async for chunk in cls._create_async_generator_nexra_chatgpt4o(model, messages, stream, proxy, markdown, **kwargs): + yield chunk + elif model in cls.nexra_chatgptv2: + async for chunk in cls._create_async_generator_nexra_chatgpt_v2(model, messages, stream, proxy, markdown, **kwargs): + yield chunk + elif model in cls.nexra_gptweb: + async for chunk in cls._create_async_generator_nexra_gptweb(model, messages, proxy, **kwargs): + yield chunk + + @classmethod + async def _create_async_generator_nexra_chatgpt( + cls, + model: str, + messages: Messages, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "messages": messages, + "prompt": prompt, + "model": model, + "markdown": markdown + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt, data, headers, proxy) + filtered_response = cls._filter_response(response) + + for chunk in filtered_response: + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt): {e}") + + @classmethod + async def _create_async_generator_nexra_chatgpt4o( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "messages": [ + { + "role": "user", + "content": prompt + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt4o, data, headers, proxy, stream) + + if stream: + async for chunk in cls._process_streaming_response(response): + yield chunk + else: + for chunk in cls._process_non_streaming_response(response): + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt4o): {e}") + + @classmethod + async def _create_async_generator_nexra_chatgpt_v2( + cls, + model: str, + messages: Messages, + stream: bool = False, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "messages": [ + { + "role": "user", + "content": prompt + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_chatgpt_v2, data, headers, proxy, stream) + + if stream: + async for chunk in cls._process_streaming_response(response): + yield chunk + else: + for chunk in cls._process_non_streaming_response(response): + yield chunk + except Exception as e: + print(f"Error during API request (nexra_chatgpt_v2): {e}") + + @classmethod + async def _create_async_generator_nexra_gptweb( + cls, + model: str, + messages: Messages, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> AsyncResult: + model = cls.get_model(model) + + headers = { + "Content-Type": "application/json" + } + + prompt = format_prompt(messages) + data = { + "prompt": prompt, + "markdown": markdown, + } + + loop = asyncio.get_event_loop() + try: + response = await loop.run_in_executor(None, cls._sync_post_request, cls.api_endpoint_nexra_gptweb, data, headers, proxy) + + for chunk in response.iter_content(1024): + if chunk: + decoded_chunk = chunk.decode().lstrip('_') + try: + response_json = json.loads(decoded_chunk) + if response_json.get("status"): + yield response_json.get("gpt", "") + except json.JSONDecodeError: + continue + except Exception as e: + print(f"Error during API request (nexra_gptweb): {e}") + + @staticmethod + def _sync_post_request(url: str, data: Dict[str, Any], headers: Dict[str, str], proxy: str = None, stream: bool = False) -> requests.Response: + proxies = { + "http": proxy, + "https": proxy, + } if proxy else None + + try: + response = requests.post(url, json=data, headers=headers, proxies=proxies, stream=stream) + response.raise_for_status() + return response + except requests.RequestException as e: + print(f"Request failed: {e}") + raise + + @staticmethod + def _process_non_streaming_response(response: requests.Response) -> str: + if response.status_code == 200: + try: + content = response.text.lstrip('') + data = json.loads(content) + return data.get('message', '') + except json.JSONDecodeError: + return "Error: Unable to decode JSON response" + else: + return f"Error: {response.status_code}" + + @staticmethod + async def _process_streaming_response(response: requests.Response): + full_message = "" + for line in response.iter_lines(decode_unicode=True): + if line: + try: + line = line.lstrip('') + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message: + yield message[len(full_message):] + full_message = message + except json.JSONDecodeError: + pass + + @staticmethod + def _filter_response(response: requests.Response) -> str: + response_json = response.json() + return response_json.get("gpt", "") diff --git a/g4f/Provider/nexra/NexraDallE.py b/g4f/Provider/nexra/NexraDallE.py new file mode 100644 index 00000000..f605c6d0 --- /dev/null +++ b/g4f/Provider/nexra/NexraDallE.py @@ -0,0 +1,63 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraDallE(AbstractProvider, ProviderModelMixin): + label = "Nexra DALL-E" + url = "https://nexra.aryahcr.cc/documentation/dall-e/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "dalle" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraDallE2.py b/g4f/Provider/nexra/NexraDallE2.py new file mode 100644 index 00000000..2a36b6e6 --- /dev/null +++ b/g4f/Provider/nexra/NexraDallE2.py @@ -0,0 +1,63 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraDallE2(AbstractProvider, ProviderModelMixin): + label = "Nexra DALL-E 2" + url = "https://nexra.aryahcr.cc/documentation/dall-e/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "dalle2" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraEmi.py b/g4f/Provider/nexra/NexraEmi.py new file mode 100644 index 00000000..c26becec --- /dev/null +++ b/g4f/Provider/nexra/NexraEmi.py @@ -0,0 +1,63 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraEmi(AbstractProvider, ProviderModelMixin): + label = "Nexra Emi" + url = "https://nexra.aryahcr.cc/documentation/emi/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "emi" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraFluxPro.py b/g4f/Provider/nexra/NexraFluxPro.py new file mode 100644 index 00000000..cfb26385 --- /dev/null +++ b/g4f/Provider/nexra/NexraFluxPro.py @@ -0,0 +1,70 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraFluxPro(AbstractProvider, ProviderModelMixin): + url = "https://nexra.aryahcr.cc/documentation/flux-pro/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = 'flux' + models = [default_model] + model_aliases = { + "flux-pro": "flux", + } + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraGeminiPro.py b/g4f/Provider/nexra/NexraGeminiPro.py new file mode 100644 index 00000000..e4e6a8ec --- /dev/null +++ b/g4f/Provider/nexra/NexraGeminiPro.py @@ -0,0 +1,86 @@ +from __future__ import annotations + +import json +import requests + +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ..helper import format_prompt + +class NexraGeminiPro(AbstractProvider, ProviderModelMixin): + label = "Nexra Gemini PRO" + url = "https://nexra.aryahcr.cc/documentation/gemini-pro/en" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + working = True + supports_stream = True + + default_model = 'gemini-pro' + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + stream: bool, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "messages": [ + { + "role": "user", + "content": format_prompt(messages) + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream) + + if stream: + return cls.process_streaming_response(response) + else: + return cls.process_non_streaming_response(response) + + @classmethod + def process_non_streaming_response(cls, response): + if response.status_code == 200: + try: + content = response.text.lstrip('') + data = json.loads(content) + return data.get('message', '') + except json.JSONDecodeError: + return "Error: Unable to decode JSON response" + else: + return f"Error: {response.status_code}" + + @classmethod + def process_streaming_response(cls, response): + full_message = "" + for line in response.iter_lines(decode_unicode=True): + if line: + try: + line = line.lstrip('') + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message: + yield message[len(full_message):] + full_message = message + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraMidjourney.py b/g4f/Provider/nexra/NexraMidjourney.py new file mode 100644 index 00000000..c427f8a0 --- /dev/null +++ b/g4f/Provider/nexra/NexraMidjourney.py @@ -0,0 +1,63 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraMidjourney(AbstractProvider, ProviderModelMixin): + label = "Nexra Midjourney" + url = "https://nexra.aryahcr.cc/documentation/midjourney/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "midjourney" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraProdiaAI.py b/g4f/Provider/nexra/NexraProdiaAI.py new file mode 100644 index 00000000..de997fce --- /dev/null +++ b/g4f/Provider/nexra/NexraProdiaAI.py @@ -0,0 +1,151 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraProdiaAI(AbstractProvider, ProviderModelMixin): + label = "Nexra Prodia AI" + url = "https://nexra.aryahcr.cc/documentation/prodia/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = 'absolutereality_v181.safetensors [3d9d4d2b]' + models = [ + '3Guofeng3_v34.safetensors [50f420de]', + 'absolutereality_V16.safetensors [37db0fc3]', + default_model, + 'amIReal_V41.safetensors [0a8a2e61]', + 'analog-diffusion-1.0.ckpt [9ca13f02]', + 'aniverse_v30.safetensors [579e6f85]', + 'anythingv3_0-pruned.ckpt [2700c435]', + 'anything-v4.5-pruned.ckpt [65745d25]', + 'anythingV5_PrtRE.safetensors [893e49b9]', + 'AOM3A3_orangemixs.safetensors [9600da17]', + 'blazing_drive_v10g.safetensors [ca1c1eab]', + 'breakdomain_I2428.safetensors [43cc7d2f]', + 'breakdomain_M2150.safetensors [15f7afca]', + 'cetusMix_Version35.safetensors [de2f2560]', + 'childrensStories_v13D.safetensors [9dfaabcb]', + 'childrensStories_v1SemiReal.safetensors [a1c56dbb]', + 'childrensStories_v1ToonAnime.safetensors [2ec7b88b]', + 'Counterfeit_v30.safetensors [9e2a8f19]', + 'cuteyukimixAdorable_midchapter3.safetensors [04bdffe6]', + 'cyberrealistic_v33.safetensors [82b0d085]', + 'dalcefo_v4.safetensors [425952fe]', + 'deliberate_v2.safetensors [10ec4b29]', + 'deliberate_v3.safetensors [afd9d2d4]', + 'dreamlike-anime-1.0.safetensors [4520e090]', + 'dreamlike-diffusion-1.0.safetensors [5c9fd6e0]', + 'dreamlike-photoreal-2.0.safetensors [fdcf65e7]', + 'dreamshaper_6BakedVae.safetensors [114c8abb]', + 'dreamshaper_7.safetensors [5cf5ae06]', + 'dreamshaper_8.safetensors [9d40847d]', + 'edgeOfRealism_eorV20.safetensors [3ed5de15]', + 'EimisAnimeDiffusion_V1.ckpt [4f828a15]', + 'elldreths-vivid-mix.safetensors [342d9d26]', + 'epicphotogasm_xPlusPlus.safetensors [1a8f6d35]', + 'epicrealism_naturalSinRC1VAE.safetensors [90a4c676]', + 'epicrealism_pureEvolutionV3.safetensors [42c8440c]', + 'ICantBelieveItsNotPhotography_seco.safetensors [4e7a3dfd]', + 'indigoFurryMix_v75Hybrid.safetensors [91208cbb]', + 'juggernaut_aftermath.safetensors [5e20c455]', + 'lofi_v4.safetensors [ccc204d6]', + 'lyriel_v16.safetensors [68fceea2]', + 'majicmixRealistic_v4.safetensors [29d0de58]', + 'mechamix_v10.safetensors [ee685731]', + 'meinamix_meinaV9.safetensors [2ec66ab0]', + 'meinamix_meinaV11.safetensors [b56ce717]', + 'neverendingDream_v122.safetensors [f964ceeb]', + 'openjourney_V4.ckpt [ca2f377f]', + 'pastelMixStylizedAnime_pruned_fp16.safetensors [793a26e8]', + 'portraitplus_V1.0.safetensors [1400e684]', + 'protogenx34.safetensors [5896f8d5]', + 'Realistic_Vision_V1.4-pruned-fp16.safetensors [8d21810b]', + 'Realistic_Vision_V2.0.safetensors [79587710]', + 'Realistic_Vision_V4.0.safetensors [29a7afaa]', + 'Realistic_Vision_V5.0.safetensors [614d1063]', + 'Realistic_Vision_V5.1.safetensors [a0f13c83]', + 'redshift_diffusion-V10.safetensors [1400e684]', + 'revAnimated_v122.safetensors [3f4fefd9]', + 'rundiffusionFX25D_v10.safetensors [cd12b0ee]', + 'rundiffusionFX_v10.safetensors [cd4e694d]', + 'sdv1_4.ckpt [7460a6fa]', + 'v1-5-pruned-emaonly.safetensors [d7049739]', + 'v1-5-inpainting.safetensors [21c7ab71]', + 'shoninsBeautiful_v10.safetensors [25d8c546]', + 'theallys-mix-ii-churned.safetensors [5d9225a4]', + 'timeless-1.0.ckpt [7c4971d4]', + 'toonyou_beta6.safetensors [980f6b15]', + ] + + model_aliases = {} + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + steps: str = 25, # Min: 1, Max: 30 + cfg_scale: str = 7, # Min: 0, Max: 20 + sampler: str = "DPM++ 2M Karras", # Select from these: "Euler","Euler a","Heun","DPM++ 2M Karras","DPM++ SDE Karras","DDIM" + negative_prompt: str = "", # Indicates what the AI should not do + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": "prodia", + "response": response, + "data": { + "model": model, + "steps": steps, + "cfg_scale": cfg_scale, + "sampler": sampler, + "negative_prompt": negative_prompt + } + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') # Remove leading underscores + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraQwen.py b/g4f/Provider/nexra/NexraQwen.py new file mode 100644 index 00000000..7f944e44 --- /dev/null +++ b/g4f/Provider/nexra/NexraQwen.py @@ -0,0 +1,86 @@ +from __future__ import annotations + +import json +import requests + +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ..helper import format_prompt + +class NexraQwen(AbstractProvider, ProviderModelMixin): + label = "Nexra Qwen" + url = "https://nexra.aryahcr.cc/documentation/qwen/en" + api_endpoint = "https://nexra.aryahcr.cc/api/chat/complements" + working = True + supports_stream = True + + default_model = 'qwen' + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + stream: bool, + proxy: str = None, + markdown: bool = False, + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "messages": [ + { + "role": "user", + "content": format_prompt(messages) + } + ], + "stream": stream, + "markdown": markdown, + "model": model + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data, stream=stream) + + if stream: + return cls.process_streaming_response(response) + else: + return cls.process_non_streaming_response(response) + + @classmethod + def process_non_streaming_response(cls, response): + if response.status_code == 200: + try: + content = response.text.lstrip('') + data = json.loads(content) + return data.get('message', '') + except json.JSONDecodeError: + return "Error: Unable to decode JSON response" + else: + return f"Error: {response.status_code}" + + @classmethod + def process_streaming_response(cls, response): + full_message = "" + for line in response.iter_lines(decode_unicode=True): + if line: + try: + line = line.lstrip('') + data = json.loads(line) + if data.get('finish'): + break + message = data.get('message', '') + if message is not None and message != full_message: + yield message[len(full_message):] + full_message = message + except json.JSONDecodeError: + pass diff --git a/g4f/Provider/nexra/NexraSD15.py b/g4f/Provider/nexra/NexraSD15.py new file mode 100644 index 00000000..860a132f --- /dev/null +++ b/g4f/Provider/nexra/NexraSD15.py @@ -0,0 +1,72 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraSD15(AbstractProvider, ProviderModelMixin): + label = "Nexra Stable Diffusion 1.5" + url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = 'stablediffusion-1.5' + models = [default_model] + + model_aliases = { + "sd-1.5": "stablediffusion-1.5", + } + + @classmethod + def get_model(cls, model: str) -> str: + if model in cls.models: + return model + elif model in cls.model_aliases: + return cls.model_aliases[model] + else: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraSDLora.py b/g4f/Provider/nexra/NexraSDLora.py new file mode 100644 index 00000000..a12bff1a --- /dev/null +++ b/g4f/Provider/nexra/NexraSDLora.py @@ -0,0 +1,69 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraSDLora(AbstractProvider, ProviderModelMixin): + label = "Nexra Stable Diffusion Lora" + url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "sdxl-lora" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + guidance: str = 0.3, # Min: 0, Max: 5 + steps: str = 2, # Min: 2, Max: 10 + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response, + "data": { + "guidance": guidance, + "steps": steps + } + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/NexraSDTurbo.py b/g4f/Provider/nexra/NexraSDTurbo.py new file mode 100644 index 00000000..865b4522 --- /dev/null +++ b/g4f/Provider/nexra/NexraSDTurbo.py @@ -0,0 +1,69 @@ +from __future__ import annotations + +import json +import requests +from ...typing import CreateResult, Messages +from ..base_provider import ProviderModelMixin, AbstractProvider +from ...image import ImageResponse + +class NexraSDTurbo(AbstractProvider, ProviderModelMixin): + label = "Nexra Stable Diffusion Turbo" + url = "https://nexra.aryahcr.cc/documentation/stable-diffusion/en" + api_endpoint = "https://nexra.aryahcr.cc/api/image/complements" + working = True + + default_model = "sdxl-turbo" + models = [default_model] + + @classmethod + def get_model(cls, model: str) -> str: + return cls.default_model + + @classmethod + def create_completion( + cls, + model: str, + messages: Messages, + proxy: str = None, + response: str = "url", # base64 or url + strength: str = 0.7, # Min: 0, Max: 1 + steps: str = 2, # Min: 1, Max: 10 + **kwargs + ) -> CreateResult: + model = cls.get_model(model) + + headers = { + 'Content-Type': 'application/json' + } + + data = { + "prompt": messages[-1]["content"], + "model": model, + "response": response, + "data": { + "strength": strength, + "steps": steps + } + } + + response = requests.post(cls.api_endpoint, headers=headers, json=data) + + result = cls.process_response(response) + yield result + + @classmethod + def process_response(cls, response): + if response.status_code == 200: + try: + content = response.text.strip() + content = content.lstrip('_') # Remove the leading underscore + data = json.loads(content) + if data.get('status') and data.get('images'): + image_url = data['images'][0] + return ImageResponse(images=[image_url], alt="Generated Image") + else: + return "Error: No image URL found in the response" + except json.JSONDecodeError as e: + return f"Error: Unable to decode JSON response. Details: {str(e)}" + else: + return f"Error: {response.status_code}, Response: {response.text}" diff --git a/g4f/Provider/nexra/__init__.py b/g4f/Provider/nexra/__init__.py new file mode 100644 index 00000000..bebc1fb6 --- /dev/null +++ b/g4f/Provider/nexra/__init__.py @@ -0,0 +1,14 @@ +from .NexraBing import NexraBing +from .NexraBlackbox import NexraBlackbox +from .NexraChatGPT import NexraChatGPT +from .NexraDallE import NexraDallE +from .NexraDallE2 import NexraDallE2 +from .NexraEmi import NexraEmi +from .NexraFluxPro import NexraFluxPro +from .NexraGeminiPro import NexraGeminiPro +from .NexraMidjourney import NexraMidjourney +from .NexraProdiaAI import NexraProdiaAI +from .NexraQwen import NexraQwen +from .NexraSD15 import NexraSD15 +from .NexraSDLora import NexraSDLora +from .NexraSDTurbo import NexraSDTurbo |