// SPDX-FileCopyrightText: Copyright 2018 yuzu Emulator Project
// SPDX-License-Identifier: GPL-2.0-or-later
#include <array>
#include <cmath>
#include <cstring>
#include <span>
#include "common/alignment.h"
#include "common/assert.h"
#include "common/bit_util.h"
#include "common/div_ceil.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
namespace Tegra::Texture {
namespace {
template <u32 mask>
constexpr u32 pdep(u32 value) {
u32 result = 0;
u32 m = mask;
for (u32 bit = 1; m; bit += bit) {
if (value & bit)
result |= m & (~m + 1);
m &= m - 1;
}
return result;
}
template <u32 mask, u32 incr_amount>
void incrpdep(u32& value) {
constexpr u32 swizzled_incr = pdep<mask>(incr_amount);
value = ((value | ~mask) + swizzled_incr) & mask;
}
template <bool TO_LINEAR, u32 BYTES_PER_PIXEL>
void SwizzleImpl(std::span<u8> output, std::span<const u8> input, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth, u32 stride) {
// The origin of the transformation can be configured here, leave it as zero as the current API
// doesn't expose it.
static constexpr u32 origin_x = 0;
static constexpr u32 origin_y = 0;
static constexpr u32 origin_z = 0;
// We can configure here a custom pitch
// As it's not exposed 'width * BYTES_PER_PIXEL' will be the expected pitch.
const u32 pitch = width * BYTES_PER_PIXEL;
const u32 gobs_in_x = Common::DivCeilLog2(stride, GOB_SIZE_X_SHIFT);
const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth);
const u32 slice_size =
Common::DivCeilLog2(height, block_height + GOB_SIZE_Y_SHIFT) * block_size;
const u32 block_height_mask = (1U << block_height) - 1;
const u32 block_depth_mask = (1U << block_depth) - 1;
const u32 x_shift = GOB_SIZE_SHIFT + block_height + block_depth;
for (u32 slice = 0; slice < depth; ++slice) {
const u32 z = slice + origin_z;
const u32 offset_z = (z >> block_depth) * slice_size +
((z & block_depth_mask) << (GOB_SIZE_SHIFT + block_height));
for (u32 line = 0; line < height; ++line) {
const u32 y = line + origin_y;
const u32 swizzled_y = pdep<SWIZZLE_Y_BITS>(y);
const u32 block_y = y >> GOB_SIZE_Y_SHIFT;
const u32 offset_y = (block_y >> block_height) * block_size +
((block_y & block_height_mask) << GOB_SIZE_SHIFT);
u32 swizzled_x = pdep<SWIZZLE_X_BITS>(origin_x * BYTES_PER_PIXEL);
for (u32 column = 0; column < width;
++column, incrpdep<SWIZZLE_X_BITS, BYTES_PER_PIXEL>(swizzled_x)) {
const u32 x = (column + origin_x) * BYTES_PER_PIXEL;
const u32 offset_x = (x >> GOB_SIZE_X_SHIFT) << x_shift;
const u32 base_swizzled_offset = offset_z + offset_y + offset_x;
const u32 swizzled_offset = base_swizzled_offset + (swizzled_x | swizzled_y);
const u32 unswizzled_offset =
slice * pitch * height + line * pitch + column * BYTES_PER_PIXEL;
u8* const dst = &output[TO_LINEAR ? swizzled_offset : unswizzled_offset];
const u8* const src = &input[TO_LINEAR ? unswizzled_offset : swizzled_offset];
std::memcpy(dst, src, BYTES_PER_PIXEL);
}
}
}
}
template <bool TO_LINEAR, u32 BYTES_PER_PIXEL>
void SwizzleSubrectImpl(std::span<u8> output, std::span<const u8> input, u32 width, u32 height,
u32 depth, u32 origin_x, u32 origin_y, u32 extent_x, u32 num_lines,
u32 block_height, u32 block_depth, u32 pitch_linear) {
// The origin of the transformation can be configured here, leave it as zero as the current API
// doesn't expose it.
static constexpr u32 origin_z = 0;
// We can configure here a custom pitch
// As it's not exposed 'width * BYTES_PER_PIXEL' will be the expected pitch.
const u32 pitch = pitch_linear;
const u32 stride = Common::AlignUpLog2(width * BYTES_PER_PIXEL, GOB_SIZE_X_SHIFT);
const u32 gobs_in_x = Common::DivCeilLog2(stride, GOB_SIZE_X_SHIFT);
const u32 block_size = gobs_in_x << (GOB_SIZE_SHIFT + block_height + block_depth);
const u32 slice_size =
Common::DivCeilLog2(height, block_height + GOB_SIZE_Y_SHIFT) * block_size;
const u32 block_height_mask = (1U << block_height) - 1;
const u32 block_depth_mask = (1U << block_depth) - 1;
const u32 x_shift = GOB_SIZE_SHIFT + block_height + block_depth;
u32 unprocessed_lines = num_lines;
u32 extent_y = std::min(num_lines, height - origin_y);
for (u32 slice = 0; slice < depth; ++slice) {
const u32 z = slice + origin_z;
const u32 offset_z = (z >> block_depth) * slice_size +
((z & block_depth_mask) << (GOB_SIZE_SHIFT + block_height));
const u32 lines_in_y = std::min(unprocessed_lines, extent_y);
for (u32 line = 0; line < lines_in_y; ++line) {
const u32 y = line + origin_y;
const u32 swizzled_y = pdep<SWIZZLE_Y_BITS>(y);
const u32 block_y = y >> GOB_SIZE_Y_SHIFT;
const u32 offset_y = (block_y >> block_height) * block_size +
((block_y & block_height_mask) << GOB_SIZE_SHIFT);
u32 swizzled_x = pdep<SWIZZLE_X_BITS>(origin_x * BYTES_PER_PIXEL);
for (u32 column = 0; column < extent_x;
++column, incrpdep<SWIZZLE_X_BITS, BYTES_PER_PIXEL>(swizzled_x)) {
const u32 x = (column + origin_x) * BYTES_PER_PIXEL;
const u32 offset_x = (x >> GOB_SIZE_X_SHIFT) << x_shift;
const u32 base_swizzled_offset = offset_z + offset_y + offset_x;
const u32 swizzled_offset = base_swizzled_offset + (swizzled_x | swizzled_y);
const u32 unswizzled_offset =
slice * pitch * height + line * pitch + column * BYTES_PER_PIXEL;
u8* const dst = &output[TO_LINEAR ? swizzled_offset : unswizzled_offset];
const u8* const src = &input[TO_LINEAR ? unswizzled_offset : swizzled_offset];
std::memcpy(dst, src, BYTES_PER_PIXEL);
}
}
unprocessed_lines -= lines_in_y;
if (unprocessed_lines == 0) {
return;
}
}
}
template <bool TO_LINEAR>
void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) {
switch (bytes_per_pixel) {
#define BPP_CASE(x) \
case x: \
return SwizzleImpl<TO_LINEAR, x>(output, input, width, height, depth, block_height, \
block_depth, stride_alignment);
BPP_CASE(1)
BPP_CASE(2)
BPP_CASE(3)
BPP_CASE(4)
BPP_CASE(6)
BPP_CASE(8)
BPP_CASE(12)
BPP_CASE(16)
#undef BPP_CASE
default:
ASSERT_MSG(false, "Invalid bytes_per_pixel={}", bytes_per_pixel);
}
}
} // Anonymous namespace
void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,
u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth,
u32 stride_alignment) {
const u32 stride = Common::AlignUpLog2(width, stride_alignment) * bytes_per_pixel;
const u32 new_bpp = std::min(4U, static_cast<u32>(std::countr_zero(width * bytes_per_pixel)));
width = (width * bytes_per_pixel) >> new_bpp;
bytes_per_pixel = 1U << new_bpp;
Swizzle<false>(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth,
stride);
}
void SwizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
u32 height, u32 depth, u32 block_height, u32 block_depth,
u32 stride_alignment) {
const u32 stride = Common::AlignUpLog2(width, stride_alignment) * bytes_per_pixel;
const u32 new_bpp = std::min(4U, static_cast<u32>(std::countr_zero(width * bytes_per_pixel)));
width = (width * bytes_per_pixel) >> new_bpp;
bytes_per_pixel = 1U << new_bpp;
Swizzle<true>(output, input, bytes_per_pixel, width, height, depth, block_height, block_depth,
stride);
}
void SwizzleSubrect(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
u32 height, u32 depth, u32 origin_x, u32 origin_y, u32 extent_x, u32 extent_y,
u32 block_height, u32 block_depth, u32 pitch_linear) {
switch (bytes_per_pixel) {
#define BPP_CASE(x) \
case x: \
return SwizzleSubrectImpl<true, x>(output, input, width, height, depth, origin_x, \
origin_y, extent_x, extent_y, block_height, \
block_depth, pitch_linear);
BPP_CASE(1)
BPP_CASE(2)
BPP_CASE(3)
BPP_CASE(4)
BPP_CASE(6)
BPP_CASE(8)
BPP_CASE(12)
BPP_CASE(16)
#undef BPP_CASE
default:
ASSERT_MSG(false, "Invalid bytes_per_pixel={}", bytes_per_pixel);
}
}
void UnswizzleSubrect(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,
u32 width, u32 height, u32 depth, u32 origin_x, u32 origin_y, u32 extent_x,
u32 extent_y, u32 block_height, u32 block_depth, u32 pitch_linear) {
switch (bytes_per_pixel) {
#define BPP_CASE(x) \
case x: \
return SwizzleSubrectImpl<false, x>(output, input, width, height, depth, origin_x, \
origin_y, extent_x, extent_y, block_height, \
block_depth, pitch_linear);
BPP_CASE(1)
BPP_CASE(2)
BPP_CASE(3)
BPP_CASE(4)
BPP_CASE(6)
BPP_CASE(8)
BPP_CASE(12)
BPP_CASE(16)
#undef BPP_CASE
default:
ASSERT_MSG(false, "Invalid bytes_per_pixel={}", bytes_per_pixel);
}
}
std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
u32 block_height, u32 block_depth) {
if (tiled) {
const u32 aligned_width = Common::AlignUpLog2(width * bytes_per_pixel, GOB_SIZE_X_SHIFT);
const u32 aligned_height = Common::AlignUpLog2(height, GOB_SIZE_Y_SHIFT + block_height);
const u32 aligned_depth = Common::AlignUpLog2(depth, GOB_SIZE_Z_SHIFT + block_depth);
return aligned_width * aligned_height * aligned_depth;
} else {
return width * height * depth * bytes_per_pixel;
}
}
u64 GetGOBOffset(u32 width, u32 height, u32 dst_x, u32 dst_y, u32 block_height,
u32 bytes_per_pixel) {
auto div_ceil = [](const u32 x, const u32 y) { return ((x + y - 1) / y); };
const u32 gobs_in_block = 1 << block_height;
const u32 y_blocks = GOB_SIZE_Y << block_height;
const u32 x_per_gob = GOB_SIZE_X / bytes_per_pixel;
const u32 x_blocks = div_ceil(width, x_per_gob);
const u32 block_size = GOB_SIZE * gobs_in_block;
const u32 stride = block_size * x_blocks;
const u32 base = (dst_y / y_blocks) * stride + (dst_x / x_per_gob) * block_size;
const u32 relative_y = dst_y % y_blocks;
return base + (relative_y / GOB_SIZE_Y) * GOB_SIZE;
}
} // namespace Tegra::Texture