summaryrefslogtreecommitdiffstats
path: root/src/video_core/textures
diff options
context:
space:
mode:
authorRodrigo Locatti <reinuseslisp@airmail.cc>2021-03-31 00:31:52 +0200
committerGitHub <noreply@github.com>2021-03-31 00:31:52 +0200
commit5ee669466fcebd2258229ed6bfe6b5e5529e0200 (patch)
tree6dbf84fb5c2c9656f1d1ef6c46b2527ea1a205ff /src/video_core/textures
parentMerge pull request #6116 from german77/userArgument (diff)
parentastc_decoder: Refactor for style and more efficient memory use (diff)
downloadyuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.gz
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.bz2
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.lz
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.xz
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.tar.zst
yuzu-5ee669466fcebd2258229ed6bfe6b5e5529e0200.zip
Diffstat (limited to 'src/video_core/textures')
-rw-r--r--src/video_core/textures/astc.cpp1710
-rw-r--r--src/video_core/textures/astc.h124
-rw-r--r--src/video_core/textures/decoders.cpp23
-rw-r--r--src/video_core/textures/decoders.h18
4 files changed, 137 insertions, 1738 deletions
diff --git a/src/video_core/textures/astc.cpp b/src/video_core/textures/astc.cpp
deleted file mode 100644
index 3625b666c..000000000
--- a/src/video_core/textures/astc.cpp
+++ /dev/null
@@ -1,1710 +0,0 @@
-// Copyright 2016 The University of North Carolina at Chapel Hill
-//
-// Licensed under the Apache License, Version 2.0 (the "License");
-// you may not use this file except in compliance with the License.
-// You may obtain a copy of the License at
-//
-// http://www.apache.org/licenses/LICENSE-2.0
-//
-// Unless required by applicable law or agreed to in writing, software
-// distributed under the License is distributed on an "AS IS" BASIS,
-// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
-// See the License for the specific language governing permissions and
-// limitations under the License.
-//
-// Please send all BUG REPORTS to <pavel@cs.unc.edu>.
-// <http://gamma.cs.unc.edu/FasTC/>
-
-#include <algorithm>
-#include <cassert>
-#include <cstring>
-#include <span>
-#include <vector>
-
-#include <boost/container/static_vector.hpp>
-
-#include "common/common_types.h"
-
-#include "video_core/textures/astc.h"
-
-namespace {
-
-/// Count the number of bits set in a number.
-constexpr u32 Popcnt(u32 n) {
- u32 c = 0;
- for (; n; c++) {
- n &= n - 1;
- }
- return c;
-}
-
-} // Anonymous namespace
-
-class InputBitStream {
-public:
- constexpr explicit InputBitStream(std::span<const u8> data, size_t start_offset = 0)
- : cur_byte{data.data()}, total_bits{data.size()}, next_bit{start_offset % 8} {}
-
- constexpr size_t GetBitsRead() const {
- return bits_read;
- }
-
- constexpr bool ReadBit() {
- if (bits_read >= total_bits * 8) {
- return 0;
- }
- const bool bit = ((*cur_byte >> next_bit) & 1) != 0;
- ++next_bit;
- while (next_bit >= 8) {
- next_bit -= 8;
- ++cur_byte;
- }
- ++bits_read;
- return bit;
- }
-
- constexpr u32 ReadBits(std::size_t nBits) {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
- template <std::size_t nBits>
- constexpr u32 ReadBits() {
- u32 ret = 0;
- for (std::size_t i = 0; i < nBits; ++i) {
- ret |= (ReadBit() & 1) << i;
- }
- return ret;
- }
-
-private:
- const u8* cur_byte;
- size_t total_bits = 0;
- size_t next_bit = 0;
- size_t bits_read = 0;
-};
-
-class OutputBitStream {
-public:
- constexpr explicit OutputBitStream(u8* ptr, std::size_t bits = 0, std::size_t start_offset = 0)
- : cur_byte{ptr}, num_bits{bits}, next_bit{start_offset % 8} {}
-
- constexpr std::size_t GetBitsWritten() const {
- return bits_written;
- }
-
- constexpr void WriteBitsR(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> (nBits - i - 1)) & 1);
- }
- }
-
- constexpr void WriteBits(u32 val, u32 nBits) {
- for (u32 i = 0; i < nBits; i++) {
- WriteBit((val >> i) & 1);
- }
- }
-
-private:
- constexpr void WriteBit(bool b) {
- if (bits_written >= num_bits) {
- return;
- }
-
- const u32 mask = 1 << next_bit++;
-
- // clear the bit
- *cur_byte &= static_cast<u8>(~mask);
-
- // Write the bit, if necessary
- if (b)
- *cur_byte |= static_cast<u8>(mask);
-
- // Next byte?
- if (next_bit >= 8) {
- cur_byte += 1;
- next_bit = 0;
- }
- }
-
- u8* cur_byte;
- std::size_t num_bits;
- std::size_t bits_written = 0;
- std::size_t next_bit = 0;
-};
-
-template <typename IntType>
-class Bits {
-public:
- explicit Bits(const IntType& v) : m_Bits(v) {}
-
- Bits(const Bits&) = delete;
- Bits& operator=(const Bits&) = delete;
-
- u8 operator[](u32 bitPos) const {
- return static_cast<u8>((m_Bits >> bitPos) & 1);
- }
-
- IntType operator()(u32 start, u32 end) const {
- if (start == end) {
- return (*this)[start];
- } else if (start > end) {
- u32 t = start;
- start = end;
- end = t;
- }
-
- u64 mask = (1 << (end - start + 1)) - 1;
- return (m_Bits >> start) & static_cast<IntType>(mask);
- }
-
-private:
- const IntType& m_Bits;
-};
-
-enum class IntegerEncoding { JustBits, Qus32, Trit };
-
-struct IntegerEncodedValue {
- constexpr IntegerEncodedValue() = default;
-
- constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
- : encoding{encoding_}, num_bits{num_bits_} {}
-
- constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
- return encoding == other.encoding && num_bits == other.num_bits;
- }
-
- // Returns the number of bits required to encode nVals values.
- u32 GetBitLength(u32 nVals) const {
- u32 totalBits = num_bits * nVals;
- if (encoding == IntegerEncoding::Trit) {
- totalBits += (nVals * 8 + 4) / 5;
- } else if (encoding == IntegerEncoding::Qus32) {
- totalBits += (nVals * 7 + 2) / 3;
- }
- return totalBits;
- }
-
- IntegerEncoding encoding{};
- u32 num_bits = 0;
- u32 bit_value = 0;
- union {
- u32 qus32_value = 0;
- u32 trit_value;
- };
-};
-using IntegerEncodedVector = boost::container::static_vector<
- IntegerEncodedValue, 256,
- boost::container::static_vector_options<
- boost::container::inplace_alignment<alignof(IntegerEncodedValue)>,
- boost::container::throw_on_overflow<false>>::type>;
-
-static void DecodeTritBlock(InputBitStream& bits, IntegerEncodedVector& result, u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- std::array<u32, 5> m;
- std::array<u32, 5> t;
- u32 T;
-
- // Read the trit encoded block according to
- // table C.2.14
- m[0] = bits.ReadBits(nBitsPerValue);
- T = bits.ReadBits<2>();
- m[1] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 2;
- m[2] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 4;
- m[3] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBits<2>() << 5;
- m[4] = bits.ReadBits(nBitsPerValue);
- T |= bits.ReadBit() << 7;
-
- u32 C = 0;
-
- Bits<u32> Tb(T);
- if (Tb(2, 4) == 7) {
- C = (Tb(5, 7) << 2) | Tb(0, 1);
- t[4] = t[3] = 2;
- } else {
- C = Tb(0, 4);
- if (Tb(5, 6) == 3) {
- t[4] = 2;
- t[3] = Tb[7];
- } else {
- t[4] = Tb[7];
- t[3] = Tb(5, 6);
- }
- }
-
- Bits<u32> Cb(C);
- if (Cb(0, 1) == 3) {
- t[2] = 2;
- t[1] = Cb[4];
- t[0] = (Cb[3] << 1) | (Cb[2] & ~Cb[3]);
- } else if (Cb(2, 3) == 3) {
- t[2] = 2;
- t[1] = 2;
- t[0] = Cb(0, 1);
- } else {
- t[2] = Cb[4];
- t[1] = Cb(2, 3);
- t[0] = (Cb[1] << 1) | (Cb[0] & ~Cb[1]);
- }
-
- for (std::size_t i = 0; i < 5; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Trit, nBitsPerValue);
- val.bit_value = m[i];
- val.trit_value = t[i];
- }
-}
-
-static void DecodeQus32Block(InputBitStream& bits, IntegerEncodedVector& result,
- u32 nBitsPerValue) {
- // Implement the algorithm in section C.2.12
- u32 m[3];
- u32 q[3];
- u32 Q;
-
- // Read the trit encoded block according to
- // table C.2.15
- m[0] = bits.ReadBits(nBitsPerValue);
- Q = bits.ReadBits<3>();
- m[1] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 3;
- m[2] = bits.ReadBits(nBitsPerValue);
- Q |= bits.ReadBits<2>() << 5;
-
- Bits<u32> Qb(Q);
- if (Qb(1, 2) == 3 && Qb(5, 6) == 0) {
- q[0] = q[1] = 4;
- q[2] = (Qb[0] << 2) | ((Qb[4] & ~Qb[0]) << 1) | (Qb[3] & ~Qb[0]);
- } else {
- u32 C = 0;
- if (Qb(1, 2) == 3) {
- q[2] = 4;
- C = (Qb(3, 4) << 3) | ((~Qb(5, 6) & 3) << 1) | Qb[0];
- } else {
- q[2] = Qb(5, 6);
- C = Qb(0, 4);
- }
-
- Bits<u32> Cb(C);
- if (Cb(0, 2) == 5) {
- q[1] = 4;
- q[0] = Cb(3, 4);
- } else {
- q[1] = Cb(3, 4);
- q[0] = Cb(0, 2);
- }
- }
-
- for (std::size_t i = 0; i < 3; ++i) {
- IntegerEncodedValue& val = result.emplace_back(IntegerEncoding::Qus32, nBitsPerValue);
- val.bit_value = m[i];
- val.qus32_value = q[i];
- }
-}
-
-// Returns a new instance of this struct that corresponds to the
-// can take no more than maxval values
-static constexpr IntegerEncodedValue CreateEncoding(u32 maxVal) {
- while (maxVal > 0) {
- u32 check = maxVal + 1;
-
- // Is maxVal a power of two?
- if (!(check & (check - 1))) {
- return IntegerEncodedValue(IntegerEncoding::JustBits, Popcnt(maxVal));
- }
-
- // Is maxVal of the type 3*2^n - 1?
- if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Trit, Popcnt(check / 3 - 1));
- }
-
- // Is maxVal of the type 5*2^n - 1?
- if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
- return IntegerEncodedValue(IntegerEncoding::Qus32, Popcnt(check / 5 - 1));
- }
-
- // Apparently it can't be represented with a bounded integer sequence...
- // just iterate.
- maxVal--;
- }
- return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
-}
-
-static constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
- std::array<IntegerEncodedValue, 256> encodings{};
- for (std::size_t i = 0; i < encodings.size(); ++i) {
- encodings[i] = CreateEncoding(static_cast<u32>(i));
- }
- return encodings;
-}
-
-static constexpr std::array EncodingsValues = MakeEncodedValues();
-
-// Fills result with the values that are encoded in the given
-// bitstream. We must know beforehand what the maximum possible
-// value is, and how many values we're decoding.
-static void DecodeIntegerSequence(IntegerEncodedVector& result, InputBitStream& bits, u32 maxRange,
- u32 nValues) {
- // Determine encoding parameters
- IntegerEncodedValue val = EncodingsValues[maxRange];
-
- // Start decoding
- u32 nValsDecoded = 0;
- while (nValsDecoded < nValues) {
- switch (val.encoding) {
- case IntegerEncoding::Qus32:
- DecodeQus32Block(bits, result, val.num_bits);
- nValsDecoded += 3;
- break;
-
- case IntegerEncoding::Trit:
- DecodeTritBlock(bits, result, val.num_bits);
- nValsDecoded += 5;
- break;
-
- case IntegerEncoding::JustBits:
- val.bit_value = bits.ReadBits(val.num_bits);
- result.push_back(val);
- nValsDecoded++;
- break;
- }
- }
-}
-
-namespace ASTCC {
-
-struct TexelWeightParams {
- u32 m_Width = 0;
- u32 m_Height = 0;
- bool m_bDualPlane = false;
- u32 m_MaxWeight = 0;
- bool m_bError = false;
- bool m_bVoidExtentLDR = false;
- bool m_bVoidExtentHDR = false;
-
- u32 GetPackedBitSize() const {
- // How many indices do we have?
- u32 nIdxs = m_Height * m_Width;
- if (m_bDualPlane) {
- nIdxs *= 2;
- }
-
- return EncodingsValues[m_MaxWeight].GetBitLength(nIdxs);
- }
-
- u32 GetNumWeightValues() const {
- u32 ret = m_Width * m_Height;
- if (m_bDualPlane) {
- ret *= 2;
- }
- return ret;
- }
-};
-
-static TexelWeightParams DecodeBlockInfo(InputBitStream& strm) {
- TexelWeightParams params;
-
- // Read the entire block mode all at once
- u16 modeBits = static_cast<u16>(strm.ReadBits<11>());
-
- // Does this match the void extent block mode?
- if ((modeBits & 0x01FF) == 0x1FC) {
- if (modeBits & 0x200) {
- params.m_bVoidExtentHDR = true;
- } else {
- params.m_bVoidExtentLDR = true;
- }
-
- // Next two bits must be one.
- if (!(modeBits & 0x400) || !strm.ReadBit()) {
- params.m_bError = true;
- }
-
- return params;
- }
-
- // First check if the last four bits are zero
- if ((modeBits & 0xF) == 0) {
- params.m_bError = true;
- return params;
- }
-
- // If the last two bits are zero, then if bits
- // [6-8] are all ones, this is also reserved.
- if ((modeBits & 0x3) == 0 && (modeBits & 0x1C0) == 0x1C0) {
- params.m_bError = true;
- return params;
- }
-
- // Otherwise, there is no error... Figure out the layout
- // of the block mode. Layout is determined by a number
- // between 0 and 9 corresponding to table C.2.8 of the
- // ASTC spec.
- u32 layout = 0;
-
- if ((modeBits & 0x1) || (modeBits & 0x2)) {
- // layout is in [0-4]
- if (modeBits & 0x8) {
- // layout is in [2-4]
- if (modeBits & 0x4) {
- // layout is in [3-4]
- if (modeBits & 0x100) {
- layout = 4;
- } else {
- layout = 3;
- }
- } else {
- layout = 2;
- }
- } else {
- // layout is in [0-1]
- if (modeBits & 0x4) {
- layout = 1;
- } else {
- layout = 0;
- }
- }
- } else {
- // layout is in [5-9]
- if (modeBits & 0x100) {
- // layout is in [7-9]
- if (modeBits & 0x80) {
- // layout is in [7-8]
- assert((modeBits & 0x40) == 0U);
- if (modeBits & 0x20) {
- layout = 8;
- } else {
- layout = 7;
- }
- } else {
- layout = 9;
- }
- } else {
- // layout is in [5-6]
- if (modeBits & 0x80) {
- layout = 6;
- } else {
- layout = 5;
- }
- }
- }
-
- assert(layout < 10);
-
- // Determine R
- u32 R = !!(modeBits & 0x10);
- if (layout < 5) {
- R |= (modeBits & 0x3) << 1;
- } else {
- R |= (modeBits & 0xC) >> 1;
- }
- assert(2 <= R && R <= 7);
-
- // Determine width & height
- switch (layout) {
- case 0: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 4;
- params.m_Height = A + 2;
- break;
- }
-
- case 1: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = B + 8;
- params.m_Height = A + 2;
- break;
- }
-
- case 2: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = B + 8;
- break;
- }
-
- case 3: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = A + 2;
- params.m_Height = B + 6;
- break;
- }
-
- case 4: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 7) & 0x1;
- params.m_Width = B + 2;
- params.m_Height = A + 2;
- break;
- }
-
- case 5: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = 12;
- params.m_Height = A + 2;
- break;
- }
-
- case 6: {
- u32 A = (modeBits >> 5) & 0x3;
- params.m_Width = A + 2;
- params.m_Height = 12;
- break;
- }
-
- case 7: {
- params.m_Width = 6;
- params.m_Height = 10;
- break;
- }
-
- case 8: {
- params.m_Width = 10;
- params.m_Height = 6;
- break;
- }
-
- case 9: {
- u32 A = (modeBits >> 5) & 0x3;
- u32 B = (modeBits >> 9) & 0x3;
- params.m_Width = A + 6;
- params.m_Height = B + 6;
- break;
- }
-
- default:
- assert(false && "Don't know this layout...");
- params.m_bError = true;
- break;
- }
-
- // Determine whether or not we're using dual planes
- // and/or high precision layouts.
- bool D = (layout != 9) && (modeBits & 0x400);
- bool H = (layout != 9) && (modeBits & 0x200);
-
- if (H) {
- const u32 maxWeights[6] = {9, 11, 15, 19, 23, 31};
- params.m_MaxWeight = maxWeights[R - 2];
- } else {
- const u32 maxWeights[6] = {1, 2, 3, 4, 5, 7};
- params.m_MaxWeight = maxWeights[R - 2];
- }
-
- params.m_bDualPlane = D;
-
- return params;
-}
-
-static void FillVoidExtentLDR(InputBitStream& strm, std::span<u32> outBuf, u32 blockWidth,
- u32 blockHeight) {
- // Don't actually care about the void extent, just read the bits...
- for (s32 i = 0; i < 4; ++i) {
- strm.ReadBits<13>();
- }
-
- // Decode the RGBA components and renormalize them to the range [0, 255]
- u16 r = static_cast<u16>(strm.ReadBits<16>());
- u16 g = static_cast<u16>(strm.ReadBits<16>());
- u16 b = static_cast<u16>(strm.ReadBits<16>());
- u16 a = static_cast<u16>(strm.ReadBits<16>());
-
- u32 rgba = (r >> 8) | (g & 0xFF00) | (static_cast<u32>(b) & 0xFF00) << 8 |
- (static_cast<u32>(a) & 0xFF00) << 16;
-
- for (u32 j = 0; j < blockHeight; j++) {
- for (u32 i = 0; i < blockWidth; i++) {
- outBuf[j * blockWidth + i] = rgba;
- }
- }
-}
-
-static void FillError(std::span<u32> outBuf, u32 blockWidth, u32 blockHeight) {
- for (u32 j = 0; j < blockHeight; j++) {
- for (u32 i = 0; i < blockWidth; i++) {
- outBuf[j * blockWidth + i] = 0xFFFF00FF;
- }
- }
-}
-
-// Replicates low numBits such that [(toBit - 1):(toBit - 1 - fromBit)]
-// is the same as [(numBits - 1):0] and repeats all the way down.
-template <typename IntType>
-static constexpr IntType Replicate(IntType val, u32 numBits, u32 toBit) {
- if (numBits == 0) {
- return 0;
- }
- if (toBit == 0) {
- return 0;
- }
- const IntType v = val & static_cast<IntType>((1 << numBits) - 1);
- IntType res = v;
- u32 reslen = numBits;
- while (reslen < toBit) {
- u32 comp = 0;
- if (numBits > toBit - reslen) {
- u32 newshift = toBit - reslen;
- comp = numBits - newshift;
- numBits = newshift;
- }
- res = static_cast<IntType>(res << numBits);
- res = static_cast<IntType>(res | (v >> comp));
- reslen += numBits;
- }
- return res;
-}
-
-static constexpr std::size_t NumReplicateEntries(u32 num_bits) {
- return std::size_t(1) << num_bits;
-}
-
-template <typename IntType, u32 num_bits, u32 to_bit>
-static constexpr auto MakeReplicateTable() {
- std::array<IntType, NumReplicateEntries(num_bits)> table{};
- for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
- table[value] = Replicate(value, num_bits, to_bit);
- }
- return table;
-}
-
-static constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
-static constexpr u32 ReplicateByteTo16(std::size_t value) {
- return REPLICATE_BYTE_TO_16_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_7_TABLE = MakeReplicateTable<u32, 1, 7>();
-static constexpr u32 ReplicateBitTo7(std::size_t value) {
- return REPLICATE_BIT_TO_7_TABLE[value];
-}
-
-static constexpr auto REPLICATE_BIT_TO_9_TABLE = MakeReplicateTable<u32, 1, 9>();
-static constexpr u32 ReplicateBitTo9(std::size_t value) {
- return REPLICATE_BIT_TO_9_TABLE[value];
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_8_TABLE = MakeReplicateTable<u32, 1, 8>();
-static constexpr auto REPLICATE_2_BIT_TO_8_TABLE = MakeReplicateTable<u32, 2, 8>();
-static constexpr auto REPLICATE_3_BIT_TO_8_TABLE = MakeReplicateTable<u32, 3, 8>();
-static constexpr auto REPLICATE_4_BIT_TO_8_TABLE = MakeReplicateTable<u32, 4, 8>();
-static constexpr auto REPLICATE_5_BIT_TO_8_TABLE = MakeReplicateTable<u32, 5, 8>();
-static constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
-static constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
-static constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
-/// Use a precompiled table with the most common usages, if it's not in the expected range, fallback
-/// to the runtime implementation
-static constexpr u32 FastReplicateTo8(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_8_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_8_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_8_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_8_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_8_TABLE[value];
- case 6:
- return REPLICATE_6_BIT_TO_8_TABLE[value];
- case 7:
- return REPLICATE_7_BIT_TO_8_TABLE[value];
- case 8:
- return REPLICATE_8_BIT_TO_8_TABLE[value];
- default:
- return Replicate(value, num_bits, 8);
- }
-}
-
-static constexpr auto REPLICATE_1_BIT_TO_6_TABLE = MakeReplicateTable<u32, 1, 6>();
-static constexpr auto REPLICATE_2_BIT_TO_6_TABLE = MakeReplicateTable<u32, 2, 6>();
-static constexpr auto REPLICATE_3_BIT_TO_6_TABLE = MakeReplicateTable<u32, 3, 6>();
-static constexpr auto REPLICATE_4_BIT_TO_6_TABLE = MakeReplicateTable<u32, 4, 6>();
-static constexpr auto REPLICATE_5_BIT_TO_6_TABLE = MakeReplicateTable<u32, 5, 6>();
-static constexpr u32 FastReplicateTo6(u32 value, u32 num_bits) {
- switch (num_bits) {
- case 1:
- return REPLICATE_1_BIT_TO_6_TABLE[value];
- case 2:
- return REPLICATE_2_BIT_TO_6_TABLE[value];
- case 3:
- return REPLICATE_3_BIT_TO_6_TABLE[value];
- case 4:
- return REPLICATE_4_BIT_TO_6_TABLE[value];
- case 5:
- return REPLICATE_5_BIT_TO_6_TABLE[value];
- default:
- return Replicate(value, num_bits, 6);
- }
-}
-
-class Pixel {
-protected:
- using ChannelType = s16;
- u8 m_BitDepth[4] = {8, 8, 8, 8};
- s16 color[4] = {};
-
-public:
- Pixel() = default;
- Pixel(u32 a, u32 r, u32 g, u32 b, u32 bitDepth = 8)
- : m_BitDepth{u8(bitDepth), u8(bitDepth), u8(bitDepth), u8(bitDepth)},
- color{static_cast<ChannelType>(a), static_cast<ChannelType>(r),
- static_cast<ChannelType>(g), static_cast<ChannelType>(b)} {}
-
- // Changes the depth of each pixel. This scales the values to
- // the appropriate bit depth by either truncating the least
- // significant bits when going from larger to smaller bit depth
- // or by repeating the most significant bits when going from
- // smaller to larger bit depths.
- void ChangeBitDepth() {
- for (u32 i = 0; i < 4; i++) {
- Component(i) = ChangeBitDepth(Component(i), m_BitDepth[i]);
- m_BitDepth[i] = 8;
- }
- }
-
- template <typename IntType>
- static float ConvertChannelToFloat(IntType channel, u8 bitDepth) {
- float denominator = static_cast<float>((1 << bitDepth) - 1);
- return static_cast<float>(channel) / denominator;
- }
-
- // Changes the bit depth of a single component. See the comment
- // above for how we do this.
- static ChannelType ChangeBitDepth(Pixel::ChannelType val, u8 oldDepth) {
- assert(oldDepth <= 8);
-
- if (oldDepth == 8) {
- // Do nothing
- return val;
- } else if (oldDepth == 0) {
- return static_cast<ChannelType>((1 << 8) - 1);
- } else if (8 > oldDepth) {
- return static_cast<ChannelType>(FastReplicateTo8(static_cast<u32>(val), oldDepth));
- } else {
- // oldDepth > newDepth
- const u8 bitsWasted = static_cast<u8>(oldDepth - 8);
- u16 v = static_cast<u16>(val);
- v = static_cast<u16>((v + (1 << (bitsWasted - 1))) >> bitsWasted);
- v = ::std::min<u16>(::std::max<u16>(0, v), static_cast<u16>((1 << 8) - 1));
- return static_cast<u8>(v);
- }
-
- assert(false && "We shouldn't get here.");
- return 0;
- }
-
- const ChannelType& A() const {
- return color[0];
- }
- ChannelType& A() {
- return color[0];
- }
- const ChannelType& R() const {
- return color[1];
- }
- ChannelType& R() {
- return color[1];
- }
- const ChannelType& G() const {
- return color[2];
- }
- ChannelType& G() {
- return color[2];
- }
- const ChannelType& B() const {
- return color[3];
- }
- ChannelType& B() {
- return color[3];
- }
- const ChannelType& Component(u32 idx) const {
- return color[idx];
- }
- ChannelType& Component(u32 idx) {
- return color[idx];
- }
-
- void GetBitDepth(u8 (&outDepth)[4]) const {
- for (s32 i = 0; i < 4; i++) {
- outDepth[i] = m_BitDepth[i];
- }
- }
-
- // Take all of the components, transform them to their 8-bit variants,
- // and then pack each channel into an R8G8B8A8 32-bit integer. We assume
- // that the architecture is little-endian, so the alpha channel will end
- // up in the most-significant byte.
- u32 Pack() const {
- Pixel eightBit(*this);
- eightBit.ChangeBitDepth();
-
- u32 r = 0;
- r |= eightBit.A();
- r <<= 8;
- r |= eightBit.B();
- r <<= 8;
- r |= eightBit.G();
- r <<= 8;
- r |= eightBit.R();
- return r;
- }
-
- // Clamps the pixel to the range [0,255]
- void ClampByte() {
- for (u32 i = 0; i < 4; i++) {
- color[i] = (color[i] < 0) ? 0 : ((color[i] > 255) ? 255 : color[i]);
- }
- }
-
- void MakeOpaque() {
- A() = 255;
- }
-};
-
-static void DecodeColorValues(u32* out, std::span<u8> data, const u32* modes, const u32 nPartitions,
- const u32 nBitsForColorData) {
- // First figure out how many color values we have
- u32 nValues = 0;
- for (u32 i = 0; i < nPartitions; i++) {
- nValues += ((modes[i] >> 2) + 1) << 1;
- }
-
- // Then based on the number of values and the remaining number of bits,
- // figure out the max value for each of them...
- u32 range = 256;
- while (--range > 0) {
- IntegerEncodedValue val = EncodingsValues[range];
- u32 bitLength = val.GetBitLength(nValues);
- if (bitLength <= nBitsForColorData) {
- // Find the smallest possible range that matches the given encoding
- while (--range > 0) {
- IntegerEncodedValue newval = EncodingsValues[range];
- if (!newval.MatchesEncoding(val)) {
- break;
- }
- }
-
- // Return to last matching range.
- range++;
- break;
- }
- }
-
- // We now have enough to decode our integer sequence.
- IntegerEncodedVector decodedColorValues;
-
- InputBitStream colorStream(data, 0);
- DecodeIntegerSequence(decodedColorValues, colorStream, range, nValues);
-
- // Once we have the decoded values, we need to dequantize them to the 0-255 range
- // This procedure is outlined in ASTC spec C.2.13
- u32 outIdx = 0;
- for (auto itr = decodedColorValues.begin(); itr != decodedColorValues.end(); ++itr) {
- // Have we already decoded all that we need?
- if (outIdx >= nValues) {
- break;
- }
-
- const IntegerEncodedValue& val = *itr;
- u32 bitlen = val.num_bits;
- u32 bitval = val.bit_value;
-
- assert(bitlen >= 1);
-
- u32 A = 0, B = 0, C = 0, D = 0;
- // A is just the lsb replicated 9 times.
- A = ReplicateBitTo9(bitval & 1);
-
- switch (val.encoding) {
- // Replicate bits
- case IntegerEncoding::JustBits:
- out[outIdx++] = FastReplicateTo8(bitval, bitlen);
- break;
-
- // Use algorithm in C.2.13
- case IntegerEncoding::Trit: {
-
- D = val.trit_value;
-
- switch (bitlen) {
- case 1: {
- C = 204;
- } break;
-
- case 2: {
- C = 93;
- // B = b000b0bb0
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 4) | (b << 2) | (b << 1);
- } break;
-
- case 3: {
- C = 44;
- // B = cb000cbcb
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 2) | cb;
- } break;
-
- case 4: {
- C = 22;
- // B = dcb000dcb
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | dcb;
- } break;
-
- case 5: {
- C = 11;
- // B = edcb000ed
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 2);
- } break;
-
- case 6: {
- C = 5;
- // B = fedcb000f
- u32 fedcb = (bitval >> 1) & 0x1F;
- B = (fedcb << 4) | (fedcb >> 4);
- } break;
-
- default:
- assert(false && "Unsupported trit encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Trit
- break;
-
- case IntegerEncoding::Qus32: {
-
- D = val.qus32_value;
-
- switch (bitlen) {
- case 1: {
- C = 113;
- } break;
-
- case 2: {
- C = 54;
- // B = b0000bb00
- u32 b = (bitval >> 1) & 1;
- B = (b << 8) | (b << 3) | (b << 2);
- } break;
-
- case 3: {
- C = 26;
- // B = cb0000cbc
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 7) | (cb << 1) | (cb >> 1);
- } break;
-
- case 4: {
- C = 13;
- // B = dcb0000dc
- u32 dcb = (bitval >> 1) & 7;
- B = (dcb << 6) | (dcb >> 1);
- } break;
-
- case 5: {
- C = 6;
- // B = edcb0000e
- u32 edcb = (bitval >> 1) & 0xF;
- B = (edcb << 5) | (edcb >> 3);
- } break;
-
- default:
- assert(false && "Unsupported quint encoding for color values!");
- break;
- } // switch(bitlen)
- } // case IntegerEncoding::Qus32
- break;
- } // switch(val.encoding)
-
- if (val.encoding != IntegerEncoding::JustBits) {
- u32 T = D * C + B;
- T ^= A;
- T = (A & 0x80) | (T >> 2);
- out[outIdx++] = T;
- }
- }
-
- // Make sure that each of our values is in the proper range...
- for (u32 i = 0; i < nValues; i++) {
- assert(out[i] <= 255);
- }
-}
-
-static u32 UnquantizeTexelWeight(const IntegerEncodedValue& val) {
- u32 bitval = val.bit_value;
- u32 bitlen = val.num_bits;
-
- u32 A = ReplicateBitTo7(bitval & 1);
- u32 B = 0, C = 0, D = 0;
-
- u32 result = 0;
- switch (val.encoding) {
- case IntegerEncoding::JustBits:
- result = FastReplicateTo6(bitval, bitlen);
- break;
-
- case IntegerEncoding::Trit: {
- D = val.trit_value;
- assert(D < 3);
-
- switch (bitlen) {
- case 0: {
- u32 results[3] = {0, 32, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 50;
- } break;
-
- case 2: {
- C = 23;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 2) | b;
- } break;
-
- case 3: {
- C = 11;
- u32 cb = (bitval >> 1) & 3;
- B = (cb << 5) | cb;
- } break;
-
- default:
- assert(false && "Invalid trit encoding for texel weight");
- break;
- }
- } break;
-
- case IntegerEncoding::Qus32: {
- D = val.qus32_value;
- assert(D < 5);
-
- switch (bitlen) {
- case 0: {
- u32 results[5] = {0, 16, 32, 47, 63};
- result = results[D];
- } break;
-
- case 1: {
- C = 28;
- } break;
-
- case 2: {
- C = 13;
- u32 b = (bitval >> 1) & 1;
- B = (b << 6) | (b << 1);
- } break;
-
- default:
- assert(false && "Invalid quint encoding for texel weight");
- break;
- }
- } break;
- }
-
- if (val.encoding != IntegerEncoding::JustBits && bitlen > 0) {
- // Decode the value...
- result = D * C + B;
- result ^= A;
- result = (A & 0x20) | (result >> 2);
- }
-
- assert(result < 64);
-
- // Change from [0,63] to [0,64]
- if (result > 32) {
- result += 1;
- }
-
- return result;
-}
-
-static void UnquantizeTexelWeights(u32 out[2][144], const IntegerEncodedVector& weights,
- const TexelWeightParams& params, const u32 blockWidth,
- const u32 blockHeight) {
- u32 weightIdx = 0;
- u32 unquantized[2][144];
-
- for (auto itr = weights.begin(); itr != weights.end(); ++itr) {
- unquantized[0][weightIdx] = UnquantizeTexelWeight(*itr);
-
- if (params.m_bDualPlane) {
- ++itr;
- unquantized[1][weightIdx] = UnquantizeTexelWeight(*itr);
- if (itr == weights.end()) {
- break;
- }
- }
-
- if (++weightIdx >= (params.m_Width * params.m_Height))
- break;
- }
-
- // Do infill if necessary (Section C.2.18) ...
- u32 Ds = (1024 + (blockWidth / 2)) / (blockWidth - 1);
- u32 Dt = (1024 + (blockHeight / 2)) / (blockHeight - 1);
-
- const u32 kPlaneScale = params.m_bDualPlane ? 2U : 1U;
- for (u32 plane = 0; plane < kPlaneScale; plane++)
- for (u32 t = 0; t < blockHeight; t++)
- for (u32 s = 0; s < blockWidth; s++) {
- u32 cs = Ds * s;
- u32 ct = Dt * t;
-
- u32 gs = (cs * (params.m_Width - 1) + 32) >> 6;
- u32 gt = (ct * (params.m_Height - 1) + 32) >> 6;
-
- u32 js = gs >> 4;
- u32 fs = gs & 0xF;
-
- u32 jt = gt >> 4;
- u32 ft = gt & 0x0F;
-
- u32 w11 = (fs * ft + 8) >> 4;
- u32 w10 = ft - w11;
- u32 w01 = fs - w11;
- u32 w00 = 16 - fs - ft + w11;
-
- u32 v0 = js + jt * params.m_Width;
-
-#define FIND_TEXEL(tidx, bidx) \
- u32 p##bidx = 0; \
- do { \
- if ((tidx) < (params.m_Width * params.m_Height)) { \
- p##bidx = unquantized[plane][(tidx)]; \
- } \
- } while (0)
-
- FIND_TEXEL(v0, 00);
- FIND_TEXEL(v0 + 1, 01);
- FIND_TEXEL(v0 + params.m_Width, 10);
- FIND_TEXEL(v0 + params.m_Width + 1, 11);
-
-#undef FIND_TEXEL
-
- out[plane][t * blockWidth + s] =
- (p00 * w00 + p01 * w01 + p10 * w10 + p11 * w11 + 8) >> 4;
- }
-}
-
-// Transfers a bit as described in C.2.14
-static inline void BitTransferSigned(s32& a, s32& b) {
- b >>= 1;
- b |= a & 0x80;
- a >>= 1;
- a &= 0x3F;
- if (a & 0x20)
- a -= 0x40;
-}
-
-// Adds more precision to the blue channel as described
-// in C.2.14
-static inline Pixel BlueContract(s32 a, s32 r, s32 g, s32 b) {
- return Pixel(static_cast<s16>(a), static_cast<s16>((r + b) >> 1),
- static_cast<s16>((g + b) >> 1), static_cast<s16>(b));
-}
-
-// Partition selection functions as specified in
-// C.2.21
-static inline u32 hash52(u32 p) {
- p ^= p >> 15;
- p -= p << 17;
- p += p << 7;
- p += p << 4;
- p ^= p >> 5;
- p += p << 16;
- p ^= p >> 7;
- p ^= p >> 3;
- p ^= p << 6;
- p ^= p >> 17;
- return p;
-}
-
-static u32 SelectPartition(s32 seed, s32 x, s32 y, s32 z, s32 partitionCount, s32 smallBlock) {
- if (1 == partitionCount)
- return 0;
-
- if (smallBlock) {
- x <<= 1;
- y <<= 1;
- z <<= 1;
- }
-
- seed += (partitionCount - 1) * 1024;
-
- u32 rnum = hash52(static_cast<u32>(seed));
- u8 seed1 = static_cast<u8>(rnum & 0xF);
- u8 seed2 = static_cast<u8>((rnum >> 4) & 0xF);
- u8 seed3 = static_cast<u8>((rnum >> 8) & 0xF);
- u8 seed4 = static_cast<u8>((rnum >> 12) & 0xF);
- u8 seed5 = static_cast<u8>((rnum >> 16) & 0xF);
- u8 seed6 = static_cast<u8>((rnum >> 20) & 0xF);
- u8 seed7 = static_cast<u8>((rnum >> 24) & 0xF);
- u8 seed8 = static_cast<u8>((rnum >> 28) & 0xF);
- u8 seed9 = static_cast<u8>((rnum >> 18) & 0xF);
- u8 seed10 = static_cast<u8>((rnum >> 22) & 0xF);
- u8 seed11 = static_cast<u8>((rnum >> 26) & 0xF);
- u8 seed12 = static_cast<u8>(((rnum >> 30) | (rnum << 2)) & 0xF);
-
- seed1 = static_cast<u8>(seed1 * seed1);
- seed2 = static_cast<u8>(seed2 * seed2);
- seed3 = static_cast<u8>(seed3 * seed3);
- seed4 = static_cast<u8>(seed4 * seed4);
- seed5 = static_cast<u8>(seed5 * seed5);
- seed6 = static_cast<u8>(seed6 * seed6);
- seed7 = static_cast<u8>(seed7 * seed7);
- seed8 = static_cast<u8>(seed8 * seed8);
- seed9 = static_cast<u8>(seed9 * seed9);
- seed10 = static_cast<u8>(seed10 * seed10);
- seed11 = static_cast<u8>(seed11 * seed11);
- seed12 = static_cast<u8>(seed12 * seed12);
-
- s32 sh1, sh2, sh3;
- if (seed & 1) {
- sh1 = (seed & 2) ? 4 : 5;
- sh2 = (partitionCount == 3) ? 6 : 5;
- } else {
- sh1 = (partitionCount == 3) ? 6 : 5;
- sh2 = (seed & 2) ? 4 : 5;
- }
- sh3 = (seed & 0x10) ? sh1 : sh2;
-
- seed1 = static_cast<u8>(seed1 >> sh1);
- seed2 = static_cast<u8>(seed2 >> sh2);
- seed3 = static_cast<u8>(seed3 >> sh1);
- seed4 = static_cast<u8>(seed4 >> sh2);
- seed5 = static_cast<u8>(seed5 >> sh1);
- seed6 = static_cast<u8>(seed6 >> sh2);
- seed7 = static_cast<u8>(seed7 >> sh1);
- seed8 = static_cast<u8>(seed8 >> sh2);
- seed9 = static_cast<u8>(seed9 >> sh3);
- seed10 = static_cast<u8>(seed10 >> sh3);
- seed11 = static_cast<u8>(seed11 >> sh3);
- seed12 = static_cast<u8>(seed12 >> sh3);
-
- s32 a = seed1 * x + seed2 * y + seed11 * z + (rnum >> 14);
- s32 b = seed3 * x + seed4 * y + seed12 * z + (rnum >> 10);
- s32 c = seed5 * x + seed6 * y + seed9 * z + (rnum >> 6);
- s32 d = seed7 * x + seed8 * y + seed10 * z + (rnum >> 2);
-
- a &= 0x3F;
- b &= 0x3F;
- c &= 0x3F;
- d &= 0x3F;
-
- if (partitionCount < 4)
- d = 0;
- if (partitionCount < 3)
- c = 0;
-
- if (a >= b && a >= c && a >= d)
- return 0;
- else if (b >= c && b >= d)
- return 1;
- else if (c >= d)
- return 2;
- return 3;
-}
-
-static inline u32 Select2DPartition(s32 seed, s32 x, s32 y, s32 partitionCount, s32 smallBlock) {
- return SelectPartition(seed, x, y, 0, partitionCount, smallBlock);
-}
-
-// Section C.2.14
-static void ComputeEndpos32s(Pixel& ep1, Pixel& ep2, const u32*& colorValues,
- u32 colorEndpos32Mode) {
-#define READ_UINT_VALUES(N) \
- u32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = *(colorValues++); \
- }
-
-#define READ_INT_VALUES(N) \
- s32 v[N]; \
- for (u32 i = 0; i < N; i++) { \
- v[i] = static_cast<s32>(*(colorValues++)); \
- }
-
- switch (colorEndpos32Mode) {
- case 0: {
- READ_UINT_VALUES(2)
- ep1 = Pixel(0xFF, v[0], v[0], v[0]);
- ep2 = Pixel(0xFF, v[1], v[1], v[1]);
- } break;
-
- case 1: {
- READ_UINT_VALUES(2)
- u32 L0 = (v[0] >> 2) | (v[1] & 0xC0);
- u32 L1 = std::max(L0 + (v[1] & 0x3F), 0xFFU);
- ep1 = Pixel(0xFF, L0, L0, L0);
- ep2 = Pixel(0xFF, L1, L1, L1);
- } break;
-
- case 4: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[3], v[1], v[1], v[1]);
- } break;
-
- case 5: {
- READ_INT_VALUES(4)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- ep1 = Pixel(v[2], v[0], v[0], v[0]);
- ep2 = Pixel(v[2] + v[3], v[0] + v[1], v[0] + v[1], v[0] + v[1]);
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 6: {
- READ_UINT_VALUES(4)
- ep1 = Pixel(0xFF, v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(0xFF, v[0], v[1], v[2]);
- } break;
-
- case 8: {
- READ_UINT_VALUES(6)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[1], v[3], v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- } break;
-
- case 9: {
- READ_INT_VALUES(6)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(0xFF, v[0], v[2], v[4]);
- ep2 = Pixel(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(0xFF, v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(0xFF, v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- case 10: {
- READ_UINT_VALUES(6)
- ep1 = Pixel(v[4], v[0] * v[3] >> 8, v[1] * v[3] >> 8, v[2] * v[3] >> 8);
- ep2 = Pixel(v[5], v[0], v[1], v[2]);
- } break;
-
- case 12: {
- READ_UINT_VALUES(8)
- if (v[1] + v[3] + v[5] >= v[0] + v[2] + v[4]) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7], v[1], v[3], v[5]);
- } else {
- ep1 = BlueContract(v[7], v[1], v[3], v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- } break;
-
- case 13: {
- READ_INT_VALUES(8)
- BitTransferSigned(v[1], v[0]);
- BitTransferSigned(v[3], v[2]);
- BitTransferSigned(v[5], v[4]);
- BitTransferSigned(v[7], v[6]);
- if (v[1] + v[3] + v[5] >= 0) {
- ep1 = Pixel(v[6], v[0], v[2], v[4]);
- ep2 = Pixel(v[7] + v[6], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- } else {
- ep1 = BlueContract(v[6] + v[7], v[0] + v[1], v[2] + v[3], v[4] + v[5]);
- ep2 = BlueContract(v[6], v[0], v[2], v[4]);
- }
- ep1.ClampByte();
- ep2.ClampByte();
- } break;
-
- default:
- assert(false && "Unsupported color endpoint mode (is it HDR?)");
- break;
- }
-
-#undef READ_UINT_VALUES
-#undef READ_INT_VALUES
-}
-
-static void DecompressBlock(std::span<const u8, 16> inBuf, const u32 blockWidth,
- const u32 blockHeight, std::span<u32, 12 * 12> outBuf) {
- InputBitStream strm(inBuf);
- TexelWeightParams weightParams = DecodeBlockInfo(strm);
-
- // Was there an error?
- if (weightParams.m_bError) {
- assert(false && "Invalid block mode");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_bVoidExtentLDR) {
- FillVoidExtentLDR(strm, outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_bVoidExtentHDR) {
- assert(false && "HDR void extent blocks are unsupported!");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_Width > blockWidth) {
- assert(false && "Texel weight grid width should be smaller than block width");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- if (weightParams.m_Height > blockHeight) {
- assert(false && "Texel weight grid height should be smaller than block height");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- // Read num partitions
- u32 nPartitions = strm.ReadBits<2>() + 1;
- assert(nPartitions <= 4);
-
- if (nPartitions == 4 && weightParams.m_bDualPlane) {
- assert(false && "Dual plane mode is incompatible with four partition blocks");
- FillError(outBuf, blockWidth, blockHeight);
- return;
- }
-
- // Based on the number of partitions, read the color endpos32 mode for
- // each partition.
-
- // Determine partitions, partition index, and color endpos32 modes
- s32 planeIdx = -1;
- u32 partitionIndex;
- u32 colorEndpos32Mode[4] = {0, 0, 0, 0};
-
- // Define color data.
- u8 colorEndpos32Data[16];
- memset(colorEndpos32Data, 0, sizeof(colorEndpos32Data));
- OutputBitStream colorEndpos32Stream(colorEndpos32Data, 16 * 8, 0);
-
- // Read extra config data...
- u32 baseCEM = 0;
- if (nPartitions == 1) {
- colorEndpos32Mode[0] = strm.ReadBits<4>();
- partitionIndex = 0;
- } else {
- partitionIndex = strm.ReadBits<10>();
- baseCEM = strm.ReadBits<6>();
- }
- u32 baseMode = (baseCEM & 3);
-
- // Remaining bits are color endpos32 data...
- u32 nWeightBits = weightParams.GetPackedBitSize();
- s32 remainingBits = 128 - nWeightBits - static_cast<s32>(strm.GetBitsRead());
-
- // Consider extra bits prior to texel data...
- u32 extraCEMbits = 0;
- if (baseMode) {
- switch (nPartitions) {
- case 2:
- extraCEMbits += 2;
- break;
- case 3:
- extraCEMbits += 5;
- break;
- case 4:
- extraCEMbits += 8;
- break;
- default:
- assert(false);
- break;
- }
- }
- remainingBits -= extraCEMbits;
-
- // Do we have a dual plane situation?
- u32 planeSelectorBits = 0;
- if (weightParams.m_bDualPlane) {
- planeSelectorBits = 2;
- }
- remainingBits -= planeSelectorBits;
-
- // Read color data...
- u32 colorDataBits = remainingBits;
- while (remainingBits > 0) {
- u32 nb = std::min(remainingBits, 8);
- u32 b = strm.ReadBits(nb);
- colorEndpos32Stream.WriteBits(b, nb);
- remainingBits -= 8;
- }
-
- // Read the plane selection bits
- planeIdx = strm.ReadBits(planeSelectorBits);
-
- // Read the rest of the CEM
- if (baseMode) {
- u32 extraCEM = strm.ReadBits(extraCEMbits);
- u32 CEM = (extraCEM << 6) | baseCEM;
- CEM >>= 2;
-
- bool C[4] = {0};
- for (u32 i = 0; i < nPartitions; i++) {
- C[i] = CEM & 1;
- CEM >>= 1;
- }
-
- u8 M[4] = {0};
- for (u32 i = 0; i < nPartitions; i++) {
- M[i] = CEM & 3;
- CEM >>= 2;
- assert(M[i] <= 3);
- }
-
- for (u32 i = 0; i < nPartitions; i++) {
- colorEndpos32Mode[i] = baseMode;
- if (!(C[i]))
- colorEndpos32Mode[i] -= 1;
- colorEndpos32Mode[i] <<= 2;
- colorEndpos32Mode[i] |= M[i];
- }
- } else if (nPartitions > 1) {
- u32 CEM = baseCEM >> 2;
- for (u32 i = 0; i < nPartitions; i++) {
- colorEndpos32Mode[i] = CEM;
- }
- }
-
- // Make sure everything up till here is sane.
- for (u32 i = 0; i < nPartitions; i++) {
- assert(colorEndpos32Mode[i] < 16);
- }
- assert(strm.GetBitsRead() + weightParams.GetPackedBitSize() == 128);
-
- // Decode both color data and texel weight data
- u32 colorValues[32]; // Four values, two endpos32s, four maximum paritions
- DecodeColorValues(colorValues, colorEndpos32Data, colorEndpos32Mode, nPartitions,
- colorDataBits);
-
- Pixel endpos32s[4][2];
- const u32* colorValuesPtr = colorValues;
- for (u32 i = 0; i < nPartitions; i++) {
- ComputeEndpos32s(endpos32s[i][0], endpos32s[i][1], colorValuesPtr, colorEndpos32Mode[i]);
- }
-
- // Read the texel weight data..
- std::array<u8, 16> texelWeightData;
- std::ranges::copy(inBuf, texelWeightData.begin());
-
- // Reverse everything
- for (u32 i = 0; i < 8; i++) {
-// Taken from http://graphics.stanford.edu/~seander/bithacks.html#ReverseByteWith64Bits
-#define REVERSE_BYTE(b) (((b)*0x80200802ULL) & 0x0884422110ULL) * 0x0101010101ULL >> 32
- u8 a = static_cast<u8>(REVERSE_BYTE(texelWeightData[i]));
- u8 b = static_cast<u8>(REVERSE_BYTE(texelWeightData[15 - i]));
-#undef REVERSE_BYTE
-
- texelWeightData[i] = b;
- texelWeightData[15 - i] = a;
- }
-
- // Make sure that higher non-texel bits are set to zero
- const u32 clearByteStart = (weightParams.GetPackedBitSize() >> 3) + 1;
- if (clearByteStart > 0 && clearByteStart <= texelWeightData.size()) {
- texelWeightData[clearByteStart - 1] &=
- static_cast<u8>((1 << (weightParams.GetPackedBitSize() % 8)) - 1);
- std::memset(texelWeightData.data() + clearByteStart, 0,
- std::min(16U - clearByteStart, 16U));
- }
-
- IntegerEncodedVector texelWeightValues;
-
- InputBitStream weightStream(texelWeightData);
-
- DecodeIntegerSequence(texelWeightValues, weightStream, weightParams.m_MaxWeight,
- weightParams.GetNumWeightValues());
-
- // Blocks can be at most 12x12, so we can have as many as 144 weights
- u32 weights[2][144];
- UnquantizeTexelWeights(weights, texelWeightValues, weightParams, blockWidth, blockHeight);
-
- // Now that we have endpos32s and weights, we can s32erpolate and generate
- // the proper decoding...
- for (u32 j = 0; j < blockHeight; j++)
- for (u32 i = 0; i < blockWidth; i++) {
- u32 partition = Select2DPartition(partitionIndex, i, j, nPartitions,
- (blockHeight * blockWidth) < 32);
- assert(partition < nPartitions);
-
- Pixel p;
- for (u32 c = 0; c < 4; c++) {
- u32 C0 = endpos32s[partition][0].Component(c);
- C0 = ReplicateByteTo16(C0);
- u32 C1 = endpos32s[partition][1].Component(c);
- C1 = ReplicateByteTo16(C1);
-
- u32 plane = 0;
- if (weightParams.m_bDualPlane && (((planeIdx + 1) & 3) == c)) {
- plane = 1;
- }
-
- u32 weight = weights[plane][j * blockWidth + i];
- u32 C = (C0 * (64 - weight) + C1 * weight + 32) / 64;
- if (C == 65535) {
- p.Component(c) = 255;
- } else {
- double Cf = static_cast<double>(C);
- p.Component(c) = static_cast<u16>(255.0 * (Cf / 65536.0) + 0.5);
- }
- }
-
- outBuf[j * blockWidth + i] = p.Pack();
- }
-}
-
-} // namespace ASTCC
-
-namespace Tegra::Texture::ASTC {
-
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span<uint8_t> output) {
- u32 block_index = 0;
- std::size_t depth_offset = 0;
- for (u32 z = 0; z < depth; z++) {
- for (u32 y = 0; y < height; y += block_height) {
- for (u32 x = 0; x < width; x += block_width) {
- const std::span<const u8, 16> blockPtr{data.subspan(block_index * 16, 16)};
-
- // Blocks can be at most 12x12
- std::array<u32, 12 * 12> uncompData;
- ASTCC::DecompressBlock(blockPtr, block_width, block_height, uncompData);
-
- u32 decompWidth = std::min(block_width, width - x);
- u32 decompHeight = std::min(block_height, height - y);
-
- const std::span<u8> outRow = output.subspan(depth_offset + (y * width + x) * 4);
- for (u32 jj = 0; jj < decompHeight; jj++) {
- std::memcpy(outRow.data() + jj * width * 4,
- uncompData.data() + jj * block_width, decompWidth * 4);
- }
- ++block_index;
- }
- }
- depth_offset += height * width * 4;
- }
-}
-
-} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/astc.h b/src/video_core/textures/astc.h
index 9105119bc..c1c73fda5 100644
--- a/src/video_core/textures/astc.h
+++ b/src/video_core/textures/astc.h
@@ -4,11 +4,129 @@
#pragma once
-#include <cstdint>
+#include <bit>
+#include "common/common_types.h"
namespace Tegra::Texture::ASTC {
-void Decompress(std::span<const uint8_t> data, uint32_t width, uint32_t height, uint32_t depth,
- uint32_t block_width, uint32_t block_height, std::span<uint8_t> output);
+enum class IntegerEncoding { JustBits, Quint, Trit };
+
+struct IntegerEncodedValue {
+ constexpr IntegerEncodedValue() = default;
+
+ constexpr IntegerEncodedValue(IntegerEncoding encoding_, u32 num_bits_)
+ : encoding{encoding_}, num_bits{num_bits_} {}
+
+ constexpr bool MatchesEncoding(const IntegerEncodedValue& other) const {
+ return encoding == other.encoding && num_bits == other.num_bits;
+ }
+
+ // Returns the number of bits required to encode num_vals values.
+ u32 GetBitLength(u32 num_vals) const {
+ u32 total_bits = num_bits * num_vals;
+ if (encoding == IntegerEncoding::Trit) {
+ total_bits += (num_vals * 8 + 4) / 5;
+ } else if (encoding == IntegerEncoding::Quint) {
+ total_bits += (num_vals * 7 + 2) / 3;
+ }
+ return total_bits;
+ }
+
+ IntegerEncoding encoding{};
+ u32 num_bits = 0;
+ u32 bit_value = 0;
+ union {
+ u32 quint_value = 0;
+ u32 trit_value;
+ };
+};
+
+// Returns a new instance of this struct that corresponds to the
+// can take no more than mav_value values
+constexpr IntegerEncodedValue CreateEncoding(u32 mav_value) {
+ while (mav_value > 0) {
+ u32 check = mav_value + 1;
+
+ // Is mav_value a power of two?
+ if (!(check & (check - 1))) {
+ return IntegerEncodedValue(IntegerEncoding::JustBits, std::popcount(mav_value));
+ }
+
+ // Is mav_value of the type 3*2^n - 1?
+ if ((check % 3 == 0) && !((check / 3) & ((check / 3) - 1))) {
+ return IntegerEncodedValue(IntegerEncoding::Trit, std::popcount(check / 3 - 1));
+ }
+
+ // Is mav_value of the type 5*2^n - 1?
+ if ((check % 5 == 0) && !((check / 5) & ((check / 5) - 1))) {
+ return IntegerEncodedValue(IntegerEncoding::Quint, std::popcount(check / 5 - 1));
+ }
+
+ // Apparently it can't be represented with a bounded integer sequence...
+ // just iterate.
+ mav_value--;
+ }
+ return IntegerEncodedValue(IntegerEncoding::JustBits, 0);
+}
+
+constexpr std::array<IntegerEncodedValue, 256> MakeEncodedValues() {
+ std::array<IntegerEncodedValue, 256> encodings{};
+ for (std::size_t i = 0; i < encodings.size(); ++i) {
+ encodings[i] = CreateEncoding(static_cast<u32>(i));
+ }
+ return encodings;
+}
+
+constexpr std::array<IntegerEncodedValue, 256> EncodingsValues = MakeEncodedValues();
+
+// Replicates low num_bits such that [(to_bit - 1):(to_bit - 1 - from_bit)]
+// is the same as [(num_bits - 1):0] and repeats all the way down.
+template <typename IntType>
+constexpr IntType Replicate(IntType val, u32 num_bits, u32 to_bit) {
+ if (num_bits == 0 || to_bit == 0) {
+ return 0;
+ }
+ const IntType v = val & static_cast<IntType>((1 << num_bits) - 1);
+ IntType res = v;
+ u32 reslen = num_bits;
+ while (reslen < to_bit) {
+ u32 comp = 0;
+ if (num_bits > to_bit - reslen) {
+ u32 newshift = to_bit - reslen;
+ comp = num_bits - newshift;
+ num_bits = newshift;
+ }
+ res = static_cast<IntType>(res << num_bits);
+ res = static_cast<IntType>(res | (v >> comp));
+ reslen += num_bits;
+ }
+ return res;
+}
+
+constexpr std::size_t NumReplicateEntries(u32 num_bits) {
+ return std::size_t(1) << num_bits;
+}
+
+template <typename IntType, u32 num_bits, u32 to_bit>
+constexpr auto MakeReplicateTable() {
+ std::array<IntType, NumReplicateEntries(num_bits)> table{};
+ for (IntType value = 0; value < static_cast<IntType>(std::size(table)); ++value) {
+ table[value] = Replicate(value, num_bits, to_bit);
+ }
+ return table;
+}
+
+constexpr auto REPLICATE_BYTE_TO_16_TABLE = MakeReplicateTable<u32, 8, 16>();
+constexpr auto REPLICATE_6_BIT_TO_8_TABLE = MakeReplicateTable<u32, 6, 8>();
+constexpr auto REPLICATE_7_BIT_TO_8_TABLE = MakeReplicateTable<u32, 7, 8>();
+constexpr auto REPLICATE_8_BIT_TO_8_TABLE = MakeReplicateTable<u32, 8, 8>();
+
+struct AstcBufferData {
+ decltype(EncodingsValues) encoding_values = EncodingsValues;
+ decltype(REPLICATE_6_BIT_TO_8_TABLE) replicate_6_to_8 = REPLICATE_6_BIT_TO_8_TABLE;
+ decltype(REPLICATE_7_BIT_TO_8_TABLE) replicate_7_to_8 = REPLICATE_7_BIT_TO_8_TABLE;
+ decltype(REPLICATE_8_BIT_TO_8_TABLE) replicate_8_to_8 = REPLICATE_8_BIT_TO_8_TABLE;
+ decltype(REPLICATE_BYTE_TO_16_TABLE) replicate_byte_to_16 = REPLICATE_BYTE_TO_16_TABLE;
+} constexpr ASTC_BUFFER_DATA;
} // namespace Tegra::Texture::ASTC
diff --git a/src/video_core/textures/decoders.cpp b/src/video_core/textures/decoders.cpp
index 62685a183..3a463d5db 100644
--- a/src/video_core/textures/decoders.cpp
+++ b/src/video_core/textures/decoders.cpp
@@ -17,26 +17,7 @@
#include "video_core/textures/texture.h"
namespace Tegra::Texture {
-
namespace {
-/**
- * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing.
- * Calculates the offset of an (x, y) position within a swizzled texture.
- * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
- */
-constexpr SwizzleTable MakeSwizzleTableConst() {
- SwizzleTable table{};
- for (u32 y = 0; y < table.size(); ++y) {
- for (u32 x = 0; x < table[0].size(); ++x) {
- table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
- (y % 2) * 16 + (x % 16);
- }
- }
- return table;
-}
-
-constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTableConst();
-
template <bool TO_LINEAR>
void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel, u32 width,
u32 height, u32 depth, u32 block_height, u32 block_depth, u32 stride_alignment) {
@@ -91,10 +72,6 @@ void Swizzle(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixe
}
} // Anonymous namespace
-SwizzleTable MakeSwizzleTable() {
- return SWIZZLE_TABLE;
-}
-
void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,
u32 width, u32 height, u32 depth, u32 block_height, u32 block_depth,
u32 stride_alignment) {
diff --git a/src/video_core/textures/decoders.h b/src/video_core/textures/decoders.h
index d7cdc81e8..4c14cefbf 100644
--- a/src/video_core/textures/decoders.h
+++ b/src/video_core/textures/decoders.h
@@ -23,8 +23,22 @@ constexpr u32 GOB_SIZE_SHIFT = GOB_SIZE_X_SHIFT + GOB_SIZE_Y_SHIFT + GOB_SIZE_Z_
using SwizzleTable = std::array<std::array<u32, GOB_SIZE_X>, GOB_SIZE_Y>;
-/// Returns a z-order swizzle table
-SwizzleTable MakeSwizzleTable();
+/**
+ * This table represents the internal swizzle of a gob, in format 16 bytes x 2 sector packing.
+ * Calculates the offset of an (x, y) position within a swizzled texture.
+ * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
+ */
+constexpr SwizzleTable MakeSwizzleTable() {
+ SwizzleTable table{};
+ for (u32 y = 0; y < table.size(); ++y) {
+ for (u32 x = 0; x < table[0].size(); ++x) {
+ table[y][x] = ((x % 64) / 32) * 256 + ((y % 8) / 2) * 64 + ((x % 32) / 16) * 32 +
+ (y % 2) * 16 + (x % 16);
+ }
+ }
+ return table;
+}
+constexpr SwizzleTable SWIZZLE_TABLE = MakeSwizzleTable();
/// Unswizzles a block linear texture into linear memory.
void UnswizzleTexture(std::span<u8> output, std::span<const u8> input, u32 bytes_per_pixel,