summaryrefslogtreecommitdiffstats
path: root/src/core/loader/nso.cpp
blob: 0155dec82437596767c9ad416769503d2d6329e9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
// Copyright 2017 Citra Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <vector>
#include <lz4.h>

#include "common/logging/log.h"
#include "common/swap.h"
#include "core/hle/kernel/process.h"
#include "core/hle/kernel/resource_limit.h"
#include "core/loader/nso.h"
#include "core/memory.h"

namespace Loader {

enum class RelocationType : u32 { ABS64 = 257, GLOB_DAT = 1025, JUMP_SLOT = 1026, RELATIVE = 1027 };

enum DynamicType : u32 {
    DT_NULL = 0,
    DT_PLTRELSZ = 2,
    DT_STRTAB = 5,
    DT_SYMTAB = 6,
    DT_RELA = 7,
    DT_RELASZ = 8,
    DT_STRSZ = 10,
    DT_JMPREL = 23,
};

struct NsoSegmentHeader {
    u32_le offset;
    u32_le location;
    u32_le size;
    u32_le alignment;
};
static_assert(sizeof(NsoSegmentHeader) == 0x10, "NsoSegmentHeader has incorrect size.");

struct NsoHeader {
    u32_le magic;
    INSERT_PADDING_BYTES(0xc);
    std::array<NsoSegmentHeader, 3> segments; // Text, RoData, Data (in that order)
    u32_le bss_size;
    INSERT_PADDING_BYTES(0x1c);
    std::array<u32_le, 3> segments_compressed_size;
};
static_assert(sizeof(NsoHeader) == 0x6c, "NsoHeader has incorrect size.");

struct ModHeader {
    INSERT_PADDING_BYTES(0x4);
    u32_le offset_to_start; // Always 8
    u32_le magic;
    u32_le dynamic_offset;
    u32_le bss_start_offset;
    u32_le bss_end_offset;
    u32_le eh_frame_hdr_start_offset;
    u32_le eh_frame_hdr_end_offset;
    u32_le module_offset; // Offset to runtime-generated module object. typically equal to .bss base
};
static_assert(sizeof(ModHeader) == 0x24, "ModHeader has incorrect size.");

FileType AppLoader_NSO::IdentifyType(FileUtil::IOFile& file) {
    u32 magic = 0;
    file.Seek(0, SEEK_SET);
    if (1 != file.ReadArray<u32>(&magic, 1)) {
        return FileType::Error;
    }

    if (MakeMagic('N', 'S', 'O', '0') == magic) {
        return FileType::NSO;
    }

    return FileType::Error;
}

static std::vector<u8> ReadSegment(FileUtil::IOFile& file, const NsoSegmentHeader& header,
                                   int compressed_size) {
    std::vector<u8> compressed_data;
    compressed_data.resize(compressed_size);

    file.Seek(header.offset, SEEK_SET);
    if (compressed_size != file.ReadBytes(compressed_data.data(), compressed_size)) {
        LOG_CRITICAL(Loader, "Failed to read %d NSO LZ4 compressed bytes", compressed_size);
        return {};
    }

    std::vector<u8> uncompressed_data;
    uncompressed_data.resize(header.size);
    const int bytes_uncompressed =
        LZ4_decompress_safe_partial(reinterpret_cast<const char*>(compressed_data.data()),
                                    reinterpret_cast<char*>(uncompressed_data.data()),
                                    compressed_size, header.size, header.size);

    ASSERT_MSG(bytes_uncompressed == header.size, "%d != %d", bytes_uncompressed, header.size);

    return uncompressed_data;
}

void AppLoader_NSO::WriteRelocations(const std::vector<Symbol>& symbols, VAddr load_base,
                                     u64 relocation_offset, u64 size, bool is_jump_relocation) {
    for (u64 i = 0; i < size; i += 0x18) {
        VAddr addr = load_base + relocation_offset + i;
        u64 offset = Memory::Read64(addr);
        u64 info = Memory::Read64(addr + 8);
        u64 addend_unsigned = Memory::Read64(addr + 16);
        s64 addend{};
        std::memcpy(&addend, &addend_unsigned, sizeof(u64));

        RelocationType rtype = static_cast<RelocationType>(info & 0xFFFFFFFF);
        u32 rsym = static_cast<u32>(info >> 32);
        VAddr ea = load_base + offset;

        const Symbol& symbol = symbols[rsym];

        switch (rtype) {
        case RelocationType::RELATIVE:
            if (!symbol.name.empty()) {
                exports[symbol.name] = load_base + addend;
            }
            Memory::Write64(ea, load_base + addend);
            break;
        case RelocationType::JUMP_SLOT:
        case RelocationType::GLOB_DAT:
            if (!symbol.value) {
                imports[symbol.name] = {ea, 0};
            } else {
                exports[symbol.name] = symbol.value;
                Memory::Write64(ea, symbol.value);
            }
            break;
        case RelocationType::ABS64:
            if (!symbol.value) {
                imports[symbol.name] = {ea, addend};
            } else {
                exports[symbol.name] = symbol.value + addend;
                Memory::Write64(ea, symbol.value + addend);
            }
            break;
        default:
            LOG_CRITICAL(Loader, "Unknown relocation type: %d", rtype);
            break;
        }
    }
}

void AppLoader_NSO::Relocate(VAddr load_base, VAddr dynamic_section_addr) {
    std::map<u64, u64> dynamic;
    while (1) {
        u64 tag = Memory::Read64(dynamic_section_addr);
        u64 value = Memory::Read64(dynamic_section_addr + 8);
        dynamic_section_addr += 16;

        if (tag == DT_NULL) {
            break;
        }
        dynamic[tag] = value;
    }

    u64 strtabsize = dynamic[DT_STRSZ];
    std::vector<u8> strtab;
    strtab.resize(strtabsize);
    Memory::ReadBlock(load_base + dynamic[DT_STRTAB], strtab.data(), strtabsize);

    VAddr addr = load_base + dynamic[DT_SYMTAB];
    std::vector<Symbol> symbols;
    while (1) {
        const u32 stname = Memory::Read32(addr);
        const u16 stshndx = Memory::Read16(addr + 6);
        const u64 stvalue = Memory::Read64(addr + 8);
        addr += 24;

        if (stname >= strtabsize) {
            break;
        }

        std::string name = reinterpret_cast<char*>(&strtab[stname]);
        if (stvalue) {
            exports[name] = load_base + stvalue;
            symbols.emplace_back(std::move(name), load_base + stvalue);
        } else {
            symbols.emplace_back(std::move(name), 0);
        }
    }

    if (dynamic.find(DT_RELA) != dynamic.end()) {
        WriteRelocations(symbols, load_base, dynamic[DT_RELA], dynamic[DT_RELASZ], false);
    }

    if (dynamic.find(DT_JMPREL) != dynamic.end()) {
        WriteRelocations(symbols, load_base, dynamic[DT_JMPREL], dynamic[DT_PLTRELSZ], true);
    }
}

VAddr AppLoader_NSO::GetEntryPoint(VAddr load_base) const {
    // Find nnMain function, set entrypoint to that address
    const auto& search = exports.find("nnMain");
    if (search != exports.end()) {
        return search->second;
    }
    LOG_ERROR(Loader, "Unable to find entrypoint, defaulting to: 0x%llx", load_base);
    return load_base;
}

static constexpr u32 PageAlignSize(u32 size) {
    return (size + Memory::PAGE_MASK) & ~Memory::PAGE_MASK;
}

bool AppLoader_NSO::LoadNso(const std::string& path, VAddr load_base) {
    FileUtil::IOFile file(path, "rb");
    if (!file.IsOpen()) {
        return {};
    }

    // Read NSO header
    NsoHeader nso_header{};
    file.Seek(0, SEEK_SET);
    if (sizeof(NsoHeader) != file.ReadBytes(&nso_header, sizeof(NsoHeader))) {
        return {};
    }
    if (nso_header.magic != MakeMagic('N', 'S', 'O', '0')) {
        return {};
    }

    // Build program image
    Kernel::SharedPtr<Kernel::CodeSet> codeset = Kernel::CodeSet::Create("", 0);
    std::vector<u8> program_image;
    for (int i = 0; i < nso_header.segments.size(); ++i) {
        std::vector<u8> data =
            ReadSegment(file, nso_header.segments[i], nso_header.segments_compressed_size[i]);
        program_image.resize(nso_header.segments[i].location);
        program_image.insert(program_image.end(), data.begin(), data.end());
        codeset->segments[i].addr = nso_header.segments[i].location;
        codeset->segments[i].offset = nso_header.segments[i].location;
        codeset->segments[i].size = PageAlignSize(static_cast<u32>(data.size()));
    }

    // Read MOD header
    ModHeader mod_header{};
    u32 bss_size{Memory::PAGE_SIZE}; // Default .bss to page size if MOD0 section doesn't exist
    std::memcpy(&mod_header, program_image.data(), sizeof(ModHeader));
    const bool has_mod_header{mod_header.magic == MakeMagic('M', 'O', 'D', '0')};
    if (has_mod_header) {
        // Resize program image to include .bss section and page align each section
        bss_size = PageAlignSize(mod_header.bss_end_offset - mod_header.bss_start_offset);
        codeset->data.size += bss_size;
    }
    program_image.resize(PageAlignSize(static_cast<u32>(program_image.size()) + bss_size));

    // Load codeset for current process
    codeset->name = path;
    codeset->memory = std::make_shared<std::vector<u8>>(std::move(program_image));
    Kernel::g_current_process->LoadModule(codeset, load_base);

    // Relocate symbols if there was a proper MOD header - This must happen after the image has been
    // loaded into memory
    if (has_mod_header) {
        Relocate(load_base, load_base + mod_header.offset_to_start + mod_header.dynamic_offset);
    }
    return true;
}

ResultStatus AppLoader_NSO::Load() {
    if (is_loaded) {
        return ResultStatus::ErrorAlreadyLoaded;
    }
    if (!file.IsOpen()) {
        return ResultStatus::Error;
    }

    // Load and relocate "main" and "sdk" NSO
    static constexpr VAddr main_base{0x10000000};
    Kernel::g_current_process = Kernel::Process::Create("main");
    if (!LoadNso(filepath, main_base)) {
        return ResultStatus::ErrorInvalidFormat;
    }
    const std::string sdkpath = filepath.substr(0, filepath.find_last_of("/\\")) + "/sdk";
    if (!LoadNso(sdkpath, 0x20000000)) {
        LOG_WARNING(Loader, "failed to find SDK NSO");
    }

    Kernel::g_current_process->svc_access_mask.set();
    Kernel::g_current_process->address_mappings = default_address_mappings;
    Kernel::g_current_process->resource_limit =
        Kernel::ResourceLimit::GetForCategory(Kernel::ResourceLimitCategory::APPLICATION);
    Kernel::g_current_process->Run(GetEntryPoint(main_base), 48, Kernel::DEFAULT_STACK_SIZE);

    // Resolve imports
    for (const auto& import : imports) {
        const auto& search = exports.find(import.first);
        if (search != exports.end()) {
            Memory::Write64(import.second.ea, search->second + import.second.addend);
        } else {
            LOG_ERROR(Loader, "Unresolved import: %s", import.first.c_str());
        }
    }

    is_loaded = true;
    return ResultStatus::Success;
}

} // namespace Loader