summaryrefslogtreecommitdiffstats
path: root/src/video_core/shader/decode/memory.cpp
blob: 1f458b6d7f96fc0bcddd80a3516e54acdc1f75e0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <vector>

#include "common/assert.h"
#include "common/common_types.h"
#include "video_core/engines/shader_bytecode.h"
#include "video_core/shader/shader_ir.h"

namespace VideoCommon::Shader {

using Tegra::Shader::Attribute;
using Tegra::Shader::Instruction;
using Tegra::Shader::OpCode;
using Tegra::Shader::Register;
using Tegra::Shader::TextureMiscMode;
using Tegra::Shader::TextureProcessMode;
using Tegra::Shader::TextureType;

static std::size_t GetCoordCount(TextureType texture_type) {
    switch (texture_type) {
    case TextureType::Texture1D:
        return 1;
    case TextureType::Texture2D:
        return 2;
    case TextureType::Texture3D:
    case TextureType::TextureCube:
        return 3;
    default:
        UNIMPLEMENTED_MSG("Unhandled texture type: {}", static_cast<u32>(texture_type));
        return 0;
    }
}

u32 ShaderIR::DecodeMemory(BasicBlock& bb, u32 pc) {
    const Instruction instr = {program_code[pc]};
    const auto opcode = OpCode::Decode(instr);

    switch (opcode->get().GetId()) {
    case OpCode::Id::LD_A: {
        // Note: Shouldn't this be interp mode flat? As in no interpolation made.
        UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex,
                             "Indirect attribute loads are not supported");
        UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0,
                             "Unaligned attribute loads are not supported");

        Tegra::Shader::IpaMode input_mode{Tegra::Shader::IpaInterpMode::Perspective,
                                          Tegra::Shader::IpaSampleMode::Default};

        u64 next_element = instr.attribute.fmt20.element;
        auto next_index = static_cast<u64>(instr.attribute.fmt20.index.Value());

        const auto LoadNextElement = [&](u32 reg_offset) {
            const Node buffer = GetRegister(instr.gpr39);
            const Node attribute = GetInputAttribute(static_cast<Attribute::Index>(next_index),
                                                     next_element, input_mode, buffer);

            SetRegister(bb, instr.gpr0.Value() + reg_offset, attribute);

            // Load the next attribute element into the following register. If the element
            // to load goes beyond the vec4 size, load the first element of the next
            // attribute.
            next_element = (next_element + 1) % 4;
            next_index = next_index + (next_element == 0 ? 1 : 0);
        };

        const u32 num_words = static_cast<u32>(instr.attribute.fmt20.size.Value()) + 1;
        for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) {
            LoadNextElement(reg_offset);
        }
        break;
    }
    case OpCode::Id::ST_A: {
        UNIMPLEMENTED_IF_MSG(instr.gpr8.Value() != Register::ZeroIndex,
                             "Indirect attribute loads are not supported");
        UNIMPLEMENTED_IF_MSG((instr.attribute.fmt20.immediate.Value() % sizeof(u32)) != 0,
                             "Unaligned attribute loads are not supported");

        u64 next_element = instr.attribute.fmt20.element;
        auto next_index = static_cast<u64>(instr.attribute.fmt20.index.Value());

        const auto StoreNextElement = [&](u32 reg_offset) {
            const auto dest = GetOutputAttribute(static_cast<Attribute::Index>(next_index),
                                                 next_element, GetRegister(instr.gpr39));
            const auto src = GetRegister(instr.gpr0.Value() + reg_offset);

            bb.push_back(Operation(OperationCode::Assign, dest, src));

            // Load the next attribute element into the following register. If the element
            // to load goes beyond the vec4 size, load the first element of the next
            // attribute.
            next_element = (next_element + 1) % 4;
            next_index = next_index + (next_element == 0 ? 1 : 0);
        };

        const u32 num_words = static_cast<u32>(instr.attribute.fmt20.size.Value()) + 1;
        for (u32 reg_offset = 0; reg_offset < num_words; ++reg_offset) {
            StoreNextElement(reg_offset);
        }

        break;
    }
    case OpCode::Id::TEXS: {
        Tegra::Shader::TextureType texture_type{instr.texs.GetTextureType()};
        const bool is_array{instr.texs.IsArrayTexture()};
        const bool depth_compare = instr.texs.UsesMiscMode(TextureMiscMode::DC);
        const auto process_mode = instr.texs.GetTextureProcessMode();

        if (instr.texs.UsesMiscMode(TextureMiscMode::NODEP)) {
            LOG_WARNING(HW_GPU, "TEXS.NODEP implementation is incomplete");
        }

        const Node texture =
            GetTexsCode(instr, texture_type, process_mode, depth_compare, is_array);

        if (instr.texs.fp32_flag) {
            WriteTexsInstructionFloat(bb, instr, texture);
        } else {
            UNIMPLEMENTED();
            // WriteTexsInstructionHalfFloat(bb, instr, texture);
        }
        break;
    }
    default:
        UNIMPLEMENTED_MSG("Unhandled memory instruction: {}", opcode->get().GetName());
    }

    return pc;
}

const Sampler& ShaderIR::GetSampler(const Tegra::Shader::Sampler& sampler, TextureType type,
                                    bool is_array, bool is_shadow) {
    const auto offset = static_cast<std::size_t>(sampler.index.Value());

    // If this sampler has already been used, return the existing mapping.
    const auto itr =
        std::find_if(used_samplers.begin(), used_samplers.end(),
                     [&](const Sampler& entry) { return entry.GetOffset() == offset; });
    if (itr != used_samplers.end()) {
        ASSERT(itr->GetType() == type && itr->IsArray() == is_array &&
               itr->IsShadow() == is_shadow);
        return *itr;
    }

    // Otherwise create a new mapping for this sampler
    const std::size_t next_index = used_samplers.size();
    const Sampler entry{offset, next_index, type, is_array, is_shadow};
    return *used_samplers.emplace(entry).first;
}

void ShaderIR::WriteTexsInstructionFloat(BasicBlock& bb, Tegra::Shader::Instruction instr,
                                         Node texture) {
    // TEXS has two destination registers and a swizzle. The first two elements in the swizzle
    // go into gpr0+0 and gpr0+1, and the rest goes into gpr28+0 and gpr28+1

    MetaComponents meta;
    std::array<Node, 4> dest;

    std::size_t written_components = 0;
    for (u32 component = 0; component < 4; ++component) {
        if (!instr.texs.IsComponentEnabled(component)) {
            continue;
        }
        meta.components_map[written_components] = static_cast<u32>(component);

        if (written_components < 2) {
            // Write the first two swizzle components to gpr0 and gpr0+1
            dest[written_components] = GetRegister(instr.gpr0.Value() + written_components % 2);
        } else {
            ASSERT(instr.texs.HasTwoDestinations());
            // Write the rest of the swizzle components to gpr28 and gpr28+1
            dest[written_components] = GetRegister(instr.gpr28.Value() + written_components % 2);
        }

        ++written_components;
    }

    std::generate(dest.begin() + written_components, dest.end(), [&]() { return GetRegister(RZ); });

    bb.push_back(Operation(OperationCode::AssignComposite, meta, texture, dest[0], dest[1], dest[2],
                           dest[3]));
}

Node ShaderIR::GetTextureCode(Instruction instr, TextureType texture_type,
                              TextureProcessMode process_mode, bool depth_compare, bool is_array,
                              std::size_t bias_offset, std::vector<Node>&& coords) {
    UNIMPLEMENTED_IF_MSG(
        (texture_type == TextureType::Texture3D && (is_array || depth_compare)) ||
            (texture_type == TextureType::TextureCube && is_array && depth_compare),
        "This method is not supported.");

    const auto& sampler = GetSampler(instr.sampler, texture_type, is_array, depth_compare);

    const bool lod_needed = process_mode == TextureProcessMode::LZ ||
                            process_mode == TextureProcessMode::LL ||
                            process_mode == TextureProcessMode::LLA;

    const bool gl_lod_supported =
        !((texture_type == TextureType::Texture2D && is_array && depth_compare) ||
          (texture_type == TextureType::TextureCube && !is_array && depth_compare));

    const OperationCode read_method =
        lod_needed && gl_lod_supported ? OperationCode::F4TextureLod : OperationCode::F4Texture;

    const MetaTexture meta{sampler, static_cast<u32>(coords.size())};

    std::vector<Node> params = std::move(coords);

    if (process_mode != TextureProcessMode::None) {
        if (process_mode == TextureProcessMode::LZ) {
            if (gl_lod_supported) {
                params.push_back(Immediate(0));
            } else {
                // Lod 0 is emulated by a big negative bias in scenarios that are not supported by
                // GLSL
                params.push_back(Immediate(-1000));
            }
        } else {
            // If present, lod or bias are always stored in the register indexed by the gpr20 field
            // with an offset depending on the usage of the other registers
            params.push_back(GetRegister(instr.gpr20.Value() + bias_offset));
        }
    }

    return Operation(read_method, meta, std::move(params));
}

Node ShaderIR::GetTexsCode(Instruction instr, TextureType texture_type,
                           TextureProcessMode process_mode, bool depth_compare, bool is_array) {

    const bool lod_bias_enabled = (process_mode != Tegra::Shader::TextureProcessMode::None &&
                                   process_mode != Tegra::Shader::TextureProcessMode::LZ);

    const auto [coord_count, total_coord_count] = ValidateAndGetCoordinateElement(
        texture_type, depth_compare, is_array, lod_bias_enabled, 4, 4);
    // If enabled arrays index is always stored in the gpr8 field
    const u64 array_register = instr.gpr8.Value();
    // First coordinate index is stored in gpr8 field or (gpr8 + 1) when arrays are used
    const u64 coord_register = array_register + (is_array ? 1 : 0);
    const u64 last_coord_register =
        (is_array || !(lod_bias_enabled || depth_compare) || (coord_count > 2))
            ? static_cast<u64>(instr.gpr20.Value())
            : coord_register + 1;

    std::vector<Node> coords;
    for (std::size_t i = 0; i < coord_count; ++i) {
        const bool last = (i == (coord_count - 1)) && (coord_count > 1);
        coords.push_back(GetRegister(last ? last_coord_register : coord_register + i));
    }

    if (depth_compare) {
        // Depth is always stored in the register signaled by gpr20
        // or in the next register if lod or bias are used
        const u64 depth_register = instr.gpr20.Value() + (lod_bias_enabled ? 1 : 0);
        coords.push_back(GetRegister(depth_register));
    }
    if (is_array) {
        coords.push_back(
            Operation(OperationCode::ICastFloat, NO_PRECISE, GetRegister(array_register)));
    }
    // Fill ignored coordinates
    while (coords.size() < total_coord_count) {
        coords.push_back(Immediate(0));
    }

    return GetTextureCode(instr, texture_type, process_mode, depth_compare, is_array,
                          (coord_count > 2 ? 1 : 0), std::move(coords));
}

std::tuple<std::size_t, std::size_t> ShaderIR::ValidateAndGetCoordinateElement(
    TextureType texture_type, bool depth_compare, bool is_array, bool lod_bias_enabled,
    std::size_t max_coords, std::size_t max_inputs) {

    const std::size_t coord_count = GetCoordCount(texture_type);

    std::size_t total_coord_count = coord_count + (is_array ? 1 : 0) + (depth_compare ? 1 : 0);
    const std::size_t total_reg_count = total_coord_count + (lod_bias_enabled ? 1 : 0);
    if (total_coord_count > max_coords || total_reg_count > max_inputs) {
        UNIMPLEMENTED_MSG("Unsupported Texture operation");
        total_coord_count = std::min(total_coord_count, max_coords);
    }
    // 1D.DC OpenGL is using a vec3 but 2nd component is ignored later.
    total_coord_count +=
        (depth_compare && !is_array && texture_type == TextureType::Texture1D) ? 1 : 0;

    return {coord_count, total_coord_count};
}

} // namespace VideoCommon::Shader