summaryrefslogtreecommitdiffstats
path: root/src/video_core/textures/decoders.cpp
blob: 8ae6dcf9aa25faf481a40cf01190e2291d06f62b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
// Copyright 2018 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.

#include <cmath>
#include <cstring>
#include "common/alignment.h"
#include "common/assert.h"
#include "core/memory.h"
#include "video_core/gpu.h"
#include "video_core/textures/decoders.h"
#include "video_core/textures/texture.h"

namespace Tegra::Texture {

/**
 * This table represents the internal swizzle of a gob,
 * in format 16 bytes x 2 sector packing.
 * Calculates the offset of an (x, y) position within a swizzled texture.
 * Taken from the Tegra X1 Technical Reference Manual. pages 1187-1188
 */
template <std::size_t N, std::size_t M, u32 Align>
struct alignas(64) SwizzleTable {
    static_assert(M * Align == 64, "Swizzle Table does not align to GOB");
    constexpr SwizzleTable() {
        for (u32 y = 0; y < N; ++y) {
            for (u32 x = 0; x < M; ++x) {
                const u32 x2 = x * Align;
                values[y][x] = static_cast<u16>(((x2 % 64) / 32) * 256 + ((y % 8) / 2) * 64 +
                                                ((x2 % 32) / 16) * 32 + (y % 2) * 16 + (x2 % 16));
            }
        }
    }
    const std::array<u16, M>& operator[](std::size_t index) const {
        return values[index];
    }
    std::array<std::array<u16, M>, N> values{};
};

constexpr auto legacy_swizzle_table = SwizzleTable<8, 64, 1>();
constexpr auto fast_swizzle_table = SwizzleTable<8, 4, 16>();

static void LegacySwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                              u8* swizzled_data, u8* unswizzled_data, bool unswizzle,
                              u32 block_height) {
    std::array<u8*, 2> data_ptrs;
    const std::size_t stride = width * bytes_per_pixel;
    const std::size_t gobs_in_x = 64;
    const std::size_t gobs_in_y = 8;
    const std::size_t gobs_size = gobs_in_x * gobs_in_y;
    const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x};
    for (std::size_t y = 0; y < height; ++y) {
        const std::size_t gob_y_address =
            (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs +
            (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size;
        const auto& table = legacy_swizzle_table[y % gobs_in_y];
        for (std::size_t x = 0; x < width; ++x) {
            const std::size_t gob_address =
                gob_y_address + (x * bytes_per_pixel / gobs_in_x) * gobs_size * block_height;
            const std::size_t x2 = x * bytes_per_pixel;
            const std::size_t swizzle_offset = gob_address + table[x2 % gobs_in_x];
            const std::size_t pixel_index = (x + y * width) * out_bytes_per_pixel;

            data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
            data_ptrs[!unswizzle] = unswizzled_data + pixel_index;

            std::memcpy(data_ptrs[0], data_ptrs[1], bytes_per_pixel);
        }
    }
}

static void FastSwizzleData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                            u8* swizzled_data, u8* unswizzled_data, bool unswizzle,
                            u32 block_height) {
    std::array<u8*, 2> data_ptrs;
    const std::size_t stride{width * bytes_per_pixel};
    const std::size_t gobs_in_x = 64;
    const std::size_t gobs_in_y = 8;
    const std::size_t gobs_size = gobs_in_x * gobs_in_y;
    const std::size_t image_width_in_gobs{(stride + gobs_in_x - 1) / gobs_in_x};
    const std::size_t copy_size{16};
    for (std::size_t y = 0; y < height; ++y) {
        const std::size_t initial_gob =
            (y / (gobs_in_y * block_height)) * gobs_size * block_height * image_width_in_gobs +
            (y % (gobs_in_y * block_height) / gobs_in_y) * gobs_size;
        const std::size_t pixel_base{y * width * out_bytes_per_pixel};
        const auto& table = fast_swizzle_table[y % gobs_in_y];
        for (std::size_t xb = 0; xb < stride; xb += copy_size) {
            const std::size_t gob_address{initial_gob +
                                          (xb / gobs_in_x) * gobs_size * block_height};
            const std::size_t swizzle_offset{gob_address + table[(xb / 16) % 4]};
            const std::size_t out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
            const std::size_t pixel_index{out_x + pixel_base};
            data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
            data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
            std::memcpy(data_ptrs[0], data_ptrs[1], copy_size);
        }
    }
}

void Fast3DProcessGobs(u8* swizzled_data, u8* unswizzled_data, bool unswizzle, const u32 x_start,
                       const u32 y_start, const u32 z_start, const u32 x_end, const u32 y_end,
                       const u32 z_end, const u32 tile_offset, const u32 xy_block_size,
                       const u32 layer_z, const u32 stride_x, const u32 bytes_per_pixel,
                       const u32 out_bytes_per_pixel) {
    std::array<u8*, 2> data_ptrs;
    u32 z_adress = tile_offset;
    const u32 x_startb = x_start * bytes_per_pixel;
    const u32 x_endb = x_end * bytes_per_pixel;
    const u32 copy_size = 16;
    const u32 gob_size = 64 * 8 * 1;
    for (u32 z = z_start; z < z_end; z++) {
        u32 y_adress = z_adress;
        u32 pixel_base = layer_z * z + y_start * stride_x;
        for (u32 y = y_start; y < y_end; y++) {
            const auto& table = fast_swizzle_table[y % 8];
            for (u32 xb = x_startb; xb < x_endb; xb += copy_size) {
                const u32 swizzle_offset{y_adress + table[(xb / 16) % 4]};
                const u32 out_x = xb * out_bytes_per_pixel / bytes_per_pixel;
                const u32 pixel_index{out_x + pixel_base};
                data_ptrs[unswizzle] = swizzled_data + swizzle_offset;
                data_ptrs[!unswizzle] = unswizzled_data + pixel_index;
                std::memcpy(data_ptrs[0], data_ptrs[1], copy_size);
            }
            pixel_base += stride_x;
            if ((y + 1) % 8 == 0)
                y_adress += gob_size;
        }
        z_adress += xy_block_size;
    }
}

void Fast3DSwizzledData(u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 width,
                        u32 height, u32 depth, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                        u32 block_height, u32 block_depth) {
    auto div_ceil = [](u32 x, u32 y) { return ((x + y - 1) / y); };

    const u32 stride_x = width * out_bytes_per_pixel;
    const u32 layer_z = height * stride_x;
    const u32 gob_x_bytes = 64;
    const u32 gob_elements_x = gob_x_bytes / bytes_per_pixel;
    const u32 gob_elements_y = 8;
    const u32 gob_elements_z = 1;
    const u32 block_x_elements = gob_elements_x;
    const u32 block_y_elements = gob_elements_y * block_height;
    const u32 block_z_elements = gob_elements_z * block_depth;
    const u32 blocks_on_x = div_ceil(width, block_x_elements);
    const u32 blocks_on_y = div_ceil(height, block_y_elements);
    const u32 blocks_on_z = div_ceil(depth, block_z_elements);
    const u32 blocks = blocks_on_x * blocks_on_y * blocks_on_z;
    const u32 gob_size = 64 * 8 * 1;
    const u32 xy_block_size = gob_size * block_height;
    const u32 block_size = xy_block_size * block_depth;
    u32 tile_offset = 0;
    for (u32 zb = 0; zb < blocks_on_z; zb++) {
        const u32 z_start = zb * block_z_elements;
        const u32 z_end = std::min(depth, z_start + block_z_elements);
        for (u32 yb = 0; yb < blocks_on_y; yb++) {
            const u32 y_start = yb * block_y_elements;
            const u32 y_end = std::min(height, y_start + block_y_elements);
            for (u32 xb = 0; xb < blocks_on_x; xb++) {
                const u32 x_start = xb * block_x_elements;
                const u32 x_end = std::min(width, x_start + block_x_elements);
                Fast3DProcessGobs(swizzled_data, unswizzled_data, unswizzle, x_start, y_start,
                                  z_start, x_end, y_end, z_end, tile_offset, xy_block_size, layer_z,
                                  stride_x, bytes_per_pixel, out_bytes_per_pixel);
                tile_offset += block_size;
            }
        }
    }
}

void CopySwizzledData(u32 width, u32 height, u32 bytes_per_pixel, u32 out_bytes_per_pixel,
                      u8* swizzled_data, u8* unswizzled_data, bool unswizzle, u32 block_height) {
    if (bytes_per_pixel % 3 != 0 && (width * bytes_per_pixel) % 16 == 0) {
        Fast3DSwizzledData(swizzled_data, unswizzled_data, unswizzle, width, height, 1U,
                           bytes_per_pixel, out_bytes_per_pixel, block_height, 1U);
    } else {
        LegacySwizzleData(width, height, bytes_per_pixel, out_bytes_per_pixel, swizzled_data,
                          unswizzled_data, unswizzle, block_height);
    }
}

u32 BytesPerPixel(TextureFormat format) {
    switch (format) {
    case TextureFormat::DXT1:
    case TextureFormat::DXN1:
        // In this case a 'pixel' actually refers to a 4x4 tile.
        return 8;
    case TextureFormat::DXT23:
    case TextureFormat::DXT45:
    case TextureFormat::DXN2:
    case TextureFormat::BC7U:
    case TextureFormat::BC6H_UF16:
    case TextureFormat::BC6H_SF16:
        // In this case a 'pixel' actually refers to a 4x4 tile.
        return 16;
    case TextureFormat::R32_G32_B32:
        return 12;
    case TextureFormat::ASTC_2D_4X4:
    case TextureFormat::ASTC_2D_8X8:
    case TextureFormat::A8R8G8B8:
    case TextureFormat::A2B10G10R10:
    case TextureFormat::BF10GF11RF11:
    case TextureFormat::R32:
    case TextureFormat::R16_G16:
        return 4;
    case TextureFormat::A1B5G5R5:
    case TextureFormat::B5G6R5:
    case TextureFormat::G8R8:
    case TextureFormat::R16:
        return 2;
    case TextureFormat::R8:
        return 1;
    case TextureFormat::R16_G16_B16_A16:
        return 8;
    case TextureFormat::R32_G32_B32_A32:
        return 16;
    case TextureFormat::R32_G32:
        return 8;
    default:
        UNIMPLEMENTED_MSG("Format not implemented");
        break;
    }
}

std::vector<u8> UnswizzleTexture(VAddr address, u32 tile_size, u32 bytes_per_pixel, u32 width,
                                 u32 height, u32 block_height) {
    std::vector<u8> unswizzled_data(width * height * bytes_per_pixel);
    CopySwizzledData(width / tile_size, height / tile_size, bytes_per_pixel, bytes_per_pixel,
                     Memory::GetPointer(address), unswizzled_data.data(), true, block_height);
    return unswizzled_data;
}

std::vector<u8> DecodeTexture(const std::vector<u8>& texture_data, TextureFormat format, u32 width,
                              u32 height) {
    std::vector<u8> rgba_data;

    // TODO(Subv): Implement.
    switch (format) {
    case TextureFormat::DXT1:
    case TextureFormat::DXT23:
    case TextureFormat::DXT45:
    case TextureFormat::DXN1:
    case TextureFormat::DXN2:
    case TextureFormat::BC7U:
    case TextureFormat::BC6H_UF16:
    case TextureFormat::BC6H_SF16:
    case TextureFormat::ASTC_2D_4X4:
    case TextureFormat::ASTC_2D_8X8:
    case TextureFormat::A8R8G8B8:
    case TextureFormat::A2B10G10R10:
    case TextureFormat::A1B5G5R5:
    case TextureFormat::B5G6R5:
    case TextureFormat::R8:
    case TextureFormat::G8R8:
    case TextureFormat::BF10GF11RF11:
    case TextureFormat::R32_G32_B32_A32:
    case TextureFormat::R32_G32:
    case TextureFormat::R32:
    case TextureFormat::R16:
    case TextureFormat::R16_G16:
    case TextureFormat::R32_G32_B32:
        // TODO(Subv): For the time being just forward the same data without any decoding.
        rgba_data = texture_data;
        break;
    default:
        UNIMPLEMENTED_MSG("Format not implemented");
        break;
    }

    return rgba_data;
}

std::size_t CalculateSize(bool tiled, u32 bytes_per_pixel, u32 width, u32 height, u32 depth,
                          u32 block_height, u32 block_depth) {
    if (tiled) {
        const u32 gobs_in_x = 64 / bytes_per_pixel;
        const u32 gobs_in_y = 8;
        const u32 gobs_in_z = 1;
        const u32 aligned_width = Common::AlignUp(width, gobs_in_x);
        const u32 aligned_height = Common::AlignUp(height, gobs_in_y * block_height);
        const u32 aligned_depth = Common::AlignUp(depth, gobs_in_z * block_depth);
        return aligned_width * aligned_height * aligned_depth * bytes_per_pixel;
    } else {
        return width * height * depth * bytes_per_pixel;
    }
}

} // namespace Tegra::Texture